|
|
Absolute deviation, 绝对离差5 v+ H1 ]. X) | J
Absolute number, 绝对数/ v& X g6 t) ~4 P8 e0 V
Absolute residuals, 绝对残差
6 m7 K; r) @1 k H2 |Acceleration array, 加速度立体阵+ A$ K; z7 t( Y; V2 f& H
Acceleration in an arbitrary direction, 任意方向上的加速度
& d$ A3 o: u9 d I! |Acceleration normal, 法向加速度6 \7 Z1 Z& w2 w( F
Acceleration space dimension, 加速度空间的维数
3 H6 \% {1 G1 \0 fAcceleration tangential, 切向加速度
5 A9 Z9 [( H' ], l/ a% X1 F% J, gAcceleration vector, 加速度向量) T# U" H- ]6 a( t4 R) U
Acceptable hypothesis, 可接受假设" y' n* q. k/ g' z" R( A$ P
Accumulation, 累积
6 `) V" y9 L. I1 v' aAccuracy, 准确度6 w! _! ~4 ]/ m: F1 o! ^* j3 f
Actual frequency, 实际频数
* W5 d# _( e. T! H- f) u/ H+ v6 W1 gAdaptive estimator, 自适应估计量* _1 U# ~7 B. Z* {0 `
Addition, 相加3 P! k3 Q. e ?2 c4 \; a2 C9 O( I
Addition theorem, 加法定理/ C2 U6 P' h: l2 w3 l% o1 m. Z( n
Additivity, 可加性7 S- o# i+ `, {
Adjusted rate, 调整率
- d1 C% J3 m0 ^8 c B! JAdjusted value, 校正值
* z0 [9 d/ A+ m. j/ AAdmissible error, 容许误差8 \. w" W/ r, {% i; o. h( g( d- U
Aggregation, 聚集性& H, d, V) E, L3 z$ {( e7 F
Alternative hypothesis, 备择假设
4 b0 I& d0 a* U/ c; |; fAmong groups, 组间8 i. O/ G7 D; P+ Q
Amounts, 总量6 [$ c& l+ Z7 @7 `7 O. c
Analysis of correlation, 相关分析
3 H& [. y6 ]- p+ A3 S0 cAnalysis of covariance, 协方差分析2 {# t, A, g `! Q$ `1 F' j
Analysis of regression, 回归分析- A4 T5 e- N4 ^% i
Analysis of time series, 时间序列分析
: p. F% m; ?) s: \Analysis of variance, 方差分析 s) |7 R( G# S0 m P
Angular transformation, 角转换
# G- g3 i, K3 k/ C2 L6 zANOVA (analysis of variance), 方差分析: K0 x @4 n7 x1 ?8 H
ANOVA Models, 方差分析模型
# ?% i0 }. K+ n# F1 mArcing, 弧/弧旋
0 L( g0 i# k& t* k, y, _Arcsine transformation, 反正弦变换# C9 d3 H; j( F7 @% O7 Y2 N
Area under the curve, 曲线面积5 x9 @9 r2 Z4 v. E. C- F V
AREG , 评估从一个时间点到下一个时间点回归相关时的误差
4 r7 R1 e$ G0 cARIMA, 季节和非季节性单变量模型的极大似然估计 ' }' C$ S3 x, ^1 g3 Y \" l" V: z
Arithmetic grid paper, 算术格纸4 `! k0 v: L- o7 g! H
Arithmetic mean, 算术平均数% C2 N5 w3 e4 i% [% s5 R
Arrhenius relation, 艾恩尼斯关系
8 @; o$ m/ g4 b7 n* [7 O- F# GAssessing fit, 拟合的评估
* h( X) D2 M, h- A) @Associative laws, 结合律- y) T: Y& Y( b' F. V, w8 u0 E
Asymmetric distribution, 非对称分布
+ r! H8 c1 z4 d( |: MAsymptotic bias, 渐近偏倚5 ] T6 \& o, A' u$ ], E
Asymptotic efficiency, 渐近效率
2 K* K i+ y" `Asymptotic variance, 渐近方差. X" R2 ?7 s, T, t0 O- {* n
Attributable risk, 归因危险度4 \; k" l9 F8 V4 b& n3 j* w- |
Attribute data, 属性资料4 x5 F& H2 |0 G+ P: [
Attribution, 属性8 k K. D( e; X4 f
Autocorrelation, 自相关6 r* S6 W7 B' U& i. s; Y
Autocorrelation of residuals, 残差的自相关
2 h( R: [9 Q0 [5 i% k0 wAverage, 平均数# I/ |/ M& H/ U& K. ?
Average confidence interval length, 平均置信区间长度
$ B. N# ~; b# d' KAverage growth rate, 平均增长率3 h4 B, ^3 l2 T) P: E/ j3 @% N, [
Bar chart, 条形图
, D, a e9 N4 x9 A5 E: {Bar graph, 条形图
1 Q/ _: O, j% J/ N5 t8 vBase period, 基期
# f: S% [$ T0 k5 [! b: `Bayes' theorem , Bayes定理
* \# R5 s7 V. n9 jBell-shaped curve, 钟形曲线
1 }" G% D3 e* Q5 j9 P! [Bernoulli distribution, 伯努力分布' l- S: J: V* Y& l" A% m: u
Best-trim estimator, 最好切尾估计量8 r: u% E# [; k: ?
Bias, 偏性
! E, J8 p) p$ I/ h2 {& CBinary logistic regression, 二元逻辑斯蒂回归
( y% i$ L+ w: u4 o- P5 kBinomial distribution, 二项分布
6 T) v3 l, p" z2 }# HBisquare, 双平方
& D2 u, [0 ~/ p! B( iBivariate Correlate, 二变量相关5 l( N- N- H1 p/ Q
Bivariate normal distribution, 双变量正态分布
' G- ^% c$ d# f& iBivariate normal population, 双变量正态总体
) \: d. F7 R+ {# |Biweight interval, 双权区间7 z# c1 q# y0 a o( {5 ~) M
Biweight M-estimator, 双权M估计量
/ U& Z. k2 }1 p- PBlock, 区组/配伍组4 j/ g! `+ ?! Y6 ]; s/ C
BMDP(Biomedical computer programs), BMDP统计软件包# D: {/ H# @; ~1 S
Boxplots, 箱线图/箱尾图3 ]9 R& C1 I* Y7 m5 }- h
Breakdown bound, 崩溃界/崩溃点. q$ o, q% v$ f# [* y! E* `# R
Canonical correlation, 典型相关0 `+ T- I2 A% @! D; L/ }
Caption, 纵标目
3 d2 d; X2 b$ p+ i4 F% d1 [8 NCase-control study, 病例对照研究
" w5 ?* e6 M# k, r" x8 M, YCategorical variable, 分类变量2 Z t& j# U, S
Catenary, 悬链线
. Y8 Y6 o; P9 U! x( UCauchy distribution, 柯西分布
& [2 {- B# N2 t5 TCause-and-effect relationship, 因果关系6 h; f; M5 r+ x% i7 f' I
Cell, 单元( `0 _1 h$ Z b% {
Censoring, 终检0 i/ m# E S T4 @0 @
Center of symmetry, 对称中心6 d$ Q, x; d+ D6 d/ a
Centering and scaling, 中心化和定标
1 A3 K. ~9 U, T% ~5 V# VCentral tendency, 集中趋势$ }4 Y9 C% b* T! x
Central value, 中心值
# x# C4 h! i% D. }0 e* `CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测: @8 H5 z$ G5 k n6 p _+ W
Chance, 机遇
W, c/ q+ M4 |' d/ `( L( xChance error, 随机误差
+ c6 E% Z) p3 ~8 f! m {8 y! \/ ?: p& OChance variable, 随机变量: Y& N. [: ]' Q) i! @5 l! [
Characteristic equation, 特征方程
* d/ N' I7 @) H V8 kCharacteristic root, 特征根' C, O; w- R$ q) b! W
Characteristic vector, 特征向量0 r# l1 {1 F' m0 {# `; ~
Chebshev criterion of fit, 拟合的切比雪夫准则5 W* I& V( T" u/ D! C# a9 u
Chernoff faces, 切尔诺夫脸谱图
1 f f1 ?( e& Y. J! GChi-square test, 卡方检验/χ2检验
2 k; M# A' f9 [Choleskey decomposition, 乔洛斯基分解# v# c5 p9 h: \ K+ I! R4 H+ L
Circle chart, 圆图
% [( X$ A; |' j6 C" Z" D3 uClass interval, 组距
. E+ j* ]8 P: s$ IClass mid-value, 组中值; N4 ?8 E1 s# R D
Class upper limit, 组上限
. X4 x. A+ i- |, a# r' J4 E9 yClassified variable, 分类变量
1 f6 m1 |% K. Y: @5 Q) hCluster analysis, 聚类分析
/ b- C" z% U# b9 \, O- DCluster sampling, 整群抽样" _# O( K- M6 m, @
Code, 代码
: d: C! H/ t/ k: _ @+ @Coded data, 编码数据. ~2 E0 v' G! D/ s+ V% U i
Coding, 编码 X0 R! a/ `# m% `$ D% B
Coefficient of contingency, 列联系数
) o' |8 M1 r& W- [4 WCoefficient of determination, 决定系数
0 |" w; V- M; o* Y) ZCoefficient of multiple correlation, 多重相关系数
! \# Z! a/ [' D: P$ \' b9 KCoefficient of partial correlation, 偏相关系数' z2 X8 M# r7 d" V
Coefficient of production-moment correlation, 积差相关系数7 L4 q1 A0 ~- t
Coefficient of rank correlation, 等级相关系数
# a& N: e6 m; \) e) FCoefficient of regression, 回归系数7 z; T C0 t/ w% c, E1 c2 Z" ?
Coefficient of skewness, 偏度系数1 k3 `! c5 E' i
Coefficient of variation, 变异系数2 O& P# O4 A% g) I, O# g& S' Q
Cohort study, 队列研究
: a% U2 m4 h- SColumn, 列2 u6 w1 N7 {# O8 W
Column effect, 列效应2 c: R7 B) s- \5 ^
Column factor, 列因素
, ^8 R! k7 Q3 I0 T+ O) q+ sCombination pool, 合并% U/ e* L2 |' E6 M$ E) M9 J
Combinative table, 组合表. q3 J) E7 i7 H2 |' g8 H) d
Common factor, 共性因子
% S4 R& o6 |2 q( zCommon regression coefficient, 公共回归系数
6 F: F' e8 d& N+ r( O( [Common value, 共同值1 n0 g- q; o& f9 q: ]# c
Common variance, 公共方差
) Q% `6 k7 D) K" b+ y$ Q5 bCommon variation, 公共变异+ g- F4 ?: G# x8 u; }" x9 C
Communality variance, 共性方差5 Q/ L7 O T8 t. Y: U+ d3 F
Comparability, 可比性/ `5 Y* P5 A; n, _& V- ?
Comparison of bathes, 批比较
. v) b' J' y, I: Z$ fComparison value, 比较值 V. X: K. U# P, h# @9 q" V
Compartment model, 分部模型
0 B% ^% y9 b- ?! v B) Z, E3 MCompassion, 伸缩
3 [% M6 H+ i! R' ^# iComplement of an event, 补事件
$ s, p: e! P6 `- j9 K$ bComplete association, 完全正相关
7 ]" y$ a o6 W( Y, O# h) v# rComplete dissociation, 完全不相关
( t# k* Z, q* m B8 Z6 e& p5 oComplete statistics, 完备统计量
: i1 N6 o- y! r! y3 ]" Z# XCompletely randomized design, 完全随机化设计9 X6 k. u6 ]! w; U
Composite event, 联合事件3 s6 W+ i- a1 i; d! O. C% m1 B2 Z% ?$ {
Composite events, 复合事件# G! C) s2 E2 m
Concavity, 凹性( q+ J6 ^7 }; w. g7 `+ R
Conditional expectation, 条件期望7 L. q" P# T$ n3 E8 L' S+ |
Conditional likelihood, 条件似然1 d( g& Y0 D+ B) E0 t& s9 b
Conditional probability, 条件概率
4 u# `8 ~! _9 b6 C1 pConditionally linear, 依条件线性
0 [; u7 _/ T7 D* p+ Y O4 ~Confidence interval, 置信区间; k' ]% S2 f% H: K, A: k
Confidence limit, 置信限
% f, Q8 T/ I- J, {1 g. NConfidence lower limit, 置信下限+ @3 V4 I+ f, x" X) w0 a$ V( x
Confidence upper limit, 置信上限. G9 w: K' l- W2 s/ i
Confirmatory Factor Analysis , 验证性因子分析0 p; J" j, E* ~7 K; Q/ Q8 g' @% f
Confirmatory research, 证实性实验研究+ d4 G# K @" T: u2 ~
Confounding factor, 混杂因素
# O9 {4 |5 K0 |, Z% y3 Q5 hConjoint, 联合分析
! P0 u( W2 `6 b2 L0 m$ e |. `Consistency, 相合性9 g% V, R. L# S- L; G- e5 M0 O
Consistency check, 一致性检验. S6 f) p/ D4 ]
Consistent asymptotically normal estimate, 相合渐近正态估计
& v) P$ i3 `. D2 kConsistent estimate, 相合估计0 _" Q; J J# @1 G. C. [2 s2 u1 d
Constrained nonlinear regression, 受约束非线性回归
6 d8 V0 i- Q0 jConstraint, 约束" V$ s& b8 z& D
Contaminated distribution, 污染分布0 T" e, E7 l* @2 Q+ s' F" |7 r
Contaminated Gausssian, 污染高斯分布, a$ ]: ?7 t) e) F- ] O
Contaminated normal distribution, 污染正态分布
/ M' F \8 P0 y* m# A" R' ]Contamination, 污染
$ {) Y& U2 J1 u n h. \0 YContamination model, 污染模型
9 S- Y" i! S$ Z9 w/ yContingency table, 列联表
I. h' @3 B1 \. f$ W2 H0 kContour, 边界线6 r+ Z3 r* A: o" e/ p
Contribution rate, 贡献率7 `% t5 |3 t) s
Control, 对照
D1 E1 M) J; @4 T5 F1 l. h' EControlled experiments, 对照实验
5 I6 K9 p9 s3 u k6 CConventional depth, 常规深度: K8 |5 T% I: `
Convolution, 卷积
& @+ d: l, N: \( N+ iCorrected factor, 校正因子8 _5 ~9 ?9 |0 j2 ~7 c5 S% k
Corrected mean, 校正均值+ A3 a5 H7 H5 V+ |
Correction coefficient, 校正系数
$ g* e8 `8 C4 _: V$ w/ R+ U' `) X: eCorrectness, 正确性
" ?3 q& d! n" f9 k: _Correlation coefficient, 相关系数/ o7 D) k4 n; W* e) }
Correlation index, 相关指数& O. g; ?4 a6 b3 `1 R( [- {
Correspondence, 对应
% e4 @& v/ O; i4 h9 {5 qCounting, 计数
/ m" H9 W( q9 |4 {) s& T! R; pCounts, 计数/频数
3 }2 ]0 P0 T0 t; j7 R6 W3 |% B DCovariance, 协方差
! R5 ~4 }. s0 R7 ]4 ?6 DCovariant, 共变
" X4 c# L5 R- ^0 n8 ?Cox Regression, Cox回归% V9 G4 v8 H6 z; _2 U8 U
Criteria for fitting, 拟合准则/ @ K9 L+ Y* w# u
Criteria of least squares, 最小二乘准则; z2 L: a% P! A( W9 a% ]
Critical ratio, 临界比5 p, r0 x2 O6 b. Z( ^+ B
Critical region, 拒绝域
2 t+ |0 e- ~ Y1 l0 W- pCritical value, 临界值
$ F$ o2 \% M& i# pCross-over design, 交叉设计3 d" S1 v6 r- o' S# t, i. m, j; V( C
Cross-section analysis, 横断面分析! `3 s7 Q% W6 Z# x
Cross-section survey, 横断面调查! \- v9 W( m! E+ T0 Q0 S# H
Crosstabs , 交叉表
( ^, W. D, L) R hCross-tabulation table, 复合表
* m2 R& Z K! E4 FCube root, 立方根# E1 m! H) N! d' K; _% ^
Cumulative distribution function, 分布函数; V/ _# q {2 k) n! s
Cumulative probability, 累计概率% f, i$ O4 x) m) s* k$ g2 E
Curvature, 曲率/弯曲) o# K# t" v" }. W) o6 p+ o4 {
Curvature, 曲率
1 R- h4 S; M$ g. UCurve fit , 曲线拟和
6 `; p5 ]! Q7 u) \5 p8 q- _# z2 mCurve fitting, 曲线拟合, y% g. G( W$ _/ M9 Q) o% V% I. a
Curvilinear regression, 曲线回归
) H% j! [6 s; {/ q* H" t3 O5 y+ DCurvilinear relation, 曲线关系
) n/ d' N$ `" ^( L. x5 X! |) O# `Cut-and-try method, 尝试法
) L7 e2 T# Q0 R1 HCycle, 周期
& J4 A3 G: t2 R$ i1 z0 `& i6 wCyclist, 周期性
0 @' A, ?! d- g8 u4 A( [$ X7 k! [D test, D检验
, z* M8 e: h w0 `2 T" H5 ZData acquisition, 资料收集/ b% K" J/ @ m% @* p: q
Data bank, 数据库
; d" B( y% l# p) O* w# yData capacity, 数据容量8 w4 w& R8 C( C7 d% b t) o& T
Data deficiencies, 数据缺乏% b! e H o) ~ k! \: x5 L/ }" c0 O
Data handling, 数据处理
J6 b3 O' V3 Y; n2 g0 z" sData manipulation, 数据处理2 _$ u" Q1 ]7 Y
Data processing, 数据处理
6 W2 t# D* M/ \3 t1 E+ zData reduction, 数据缩减
5 |" J8 ?" S' N3 g6 {, w- pData set, 数据集; S+ x* ~/ ]2 @) |4 q
Data sources, 数据来源+ J1 S+ }) G# o! ^7 D5 H/ E! E
Data transformation, 数据变换2 W7 C' }' Q# K
Data validity, 数据有效性
) }2 P+ S; v# x7 m7 J, zData-in, 数据输入
7 o) n0 T$ \, Z4 _Data-out, 数据输出: @3 V( l& u$ C. A7 i
Dead time, 停滞期% G l9 L9 ^ D* }; E
Degree of freedom, 自由度, H& T/ T& c' |1 w' M
Degree of precision, 精密度( q+ S9 U1 B+ y- M' q' M
Degree of reliability, 可靠性程度
* C! [! V) l6 \Degression, 递减8 r$ a0 D5 n) X, ^8 Z2 G# _5 I* J
Density function, 密度函数
/ h% x' }) O& _* VDensity of data points, 数据点的密度" H+ y5 D: a1 X Y) ~
Dependent variable, 应变量/依变量/因变量7 a1 l2 i9 F( L$ S6 r0 t; B9 w; m( L
Dependent variable, 因变量
K; r9 W3 Y# ]* u/ Y* Y5 C' mDepth, 深度+ v* V# F8 p* d/ t/ N
Derivative matrix, 导数矩阵; v# A9 }3 d/ z
Derivative-free methods, 无导数方法3 j0 M, o' w+ u
Design, 设计8 p9 N) n. }+ T+ B" R
Determinacy, 确定性! P5 M+ \6 L% z# j) j& s
Determinant, 行列式6 _. W" D) T7 h7 u# S2 \. a1 ^
Determinant, 决定因素6 j2 e9 S. j% A9 F) e M2 k, X/ B
Deviation, 离差# u) W8 G W: D; C
Deviation from average, 离均差/ o" w5 @" G5 c$ Y
Diagnostic plot, 诊断图
2 o. N5 y. \6 z @, S1 U" ]: @8 A$ }, YDichotomous variable, 二分变量
; e6 S9 {3 L! p7 _Differential equation, 微分方程, Z8 E Z2 S0 m0 @0 `3 C' [: k
Direct standardization, 直接标准化法6 E. j& c$ z/ J( H- z) c- C
Discrete variable, 离散型变量
! _+ x; Y4 t. ~$ M0 H# NDISCRIMINANT, 判断 1 Z4 l) r) |% V
Discriminant analysis, 判别分析, {% e; ~/ B4 |7 g
Discriminant coefficient, 判别系数1 v, D3 P$ s0 a4 d8 |
Discriminant function, 判别值
$ p* H0 D- N) c8 N/ x. A4 Q# e7 |Dispersion, 散布/分散度6 [+ ]! T$ w( ?: a
Disproportional, 不成比例的0 D1 D- a7 g3 s: F- l
Disproportionate sub-class numbers, 不成比例次级组含量
z7 k1 X6 ]6 b- i- a" R) S9 UDistribution free, 分布无关性/免分布
8 S1 u/ \" }; }/ m" qDistribution shape, 分布形状/ U) f9 s# t3 F8 c
Distribution-free method, 任意分布法4 T7 r# L. G$ M
Distributive laws, 分配律
( f" N- u* `5 [* X8 S t# gDisturbance, 随机扰动项2 J6 ]9 }7 y( [: c. c- O
Dose response curve, 剂量反应曲线
( S, I( F. c2 h& z6 rDouble blind method, 双盲法. c! Y% J& M: A" @" Q, L
Double blind trial, 双盲试验9 {: f. N+ e. y
Double exponential distribution, 双指数分布
3 Z5 T; G3 e$ f- B5 M2 PDouble logarithmic, 双对数- u% M: Z. U) N4 o3 g0 L9 }( y
Downward rank, 降秩
1 k7 E5 r6 b2 r) rDual-space plot, 对偶空间图
4 Q P( A" }2 g) ?DUD, 无导数方法
8 V( y q; g2 _. E" UDuncan's new multiple range method, 新复极差法/Duncan新法( y! _5 j# i5 Y2 E, D8 ?# C
Effect, 实验效应! H" _) z# k/ j- q2 D
Eigenvalue, 特征值% y& ]- [- l: n0 c" N; p+ X
Eigenvector, 特征向量 W3 X6 s- ~$ V$ ~% _! ]1 @4 B
Ellipse, 椭圆1 T; T. U1 v4 o: `5 Z w% b4 v" B
Empirical distribution, 经验分布% h# m6 H# \. V2 X3 L
Empirical probability, 经验概率单位# { M$ |) X: x% l& p
Enumeration data, 计数资料
* Y/ |5 }/ \. \/ F0 n1 cEqual sun-class number, 相等次级组含量
: y( N9 q- s9 @' n5 l/ l$ k8 LEqually likely, 等可能
$ L0 V. l/ e0 k; q0 F) S, AEquivariance, 同变性% C) ?' l6 `. @1 w% l
Error, 误差/错误
, a) C7 e, `. P m! L P8 kError of estimate, 估计误差3 B/ ~% x( S! S! ^4 W
Error type I, 第一类错误5 b: s" d8 L' l- Y! U m) v. q
Error type II, 第二类错误7 x! Y0 R; L8 V) }! j* j
Estimand, 被估量
" V$ |4 X" c0 J/ o! p$ rEstimated error mean squares, 估计误差均方! t4 @4 r! k5 Y. T/ z8 \" E- D
Estimated error sum of squares, 估计误差平方和
! I: i0 i5 z# E9 wEuclidean distance, 欧式距离0 z. {+ }2 I& n9 ?4 o, A( `
Event, 事件
' |) y0 v I8 U5 P: v9 g8 zEvent, 事件# E& E) Z8 p3 Y& s; S8 h
Exceptional data point, 异常数据点* T. r! A( y4 U9 y& j1 Q
Expectation plane, 期望平面
8 A: P: n0 Y9 SExpectation surface, 期望曲面
0 L# G; e ^/ LExpected values, 期望值
( N8 J( `( I ]0 K$ c1 ZExperiment, 实验
/ h/ J4 }1 }9 z+ N1 |9 s# A. K+ sExperimental sampling, 试验抽样
5 t) b8 j( Q$ R P& j' mExperimental unit, 试验单位
( [% |# z7 a' B# `& p8 AExplanatory variable, 说明变量
5 J" t! s0 z( V' K8 |! Z/ j, x ?Exploratory data analysis, 探索性数据分析1 p2 S$ E' n' j; @) m& E5 l2 b
Explore Summarize, 探索-摘要
$ Y, g& Z1 B* z+ EExponential curve, 指数曲线! \" [0 _: G. a
Exponential growth, 指数式增长5 o3 V( t" h R7 X8 |
EXSMOOTH, 指数平滑方法
# i( V' @. _3 L; G) P* [7 U8 zExtended fit, 扩充拟合3 w' g+ g; x6 i. ^. l+ z8 ?! b, k
Extra parameter, 附加参数
) \" K/ _1 |4 ?0 e0 U4 ^Extrapolation, 外推法
& Q7 m2 f( r: R3 Y7 WExtreme observation, 末端观测值
& x1 G) H! n( B( g9 n/ eExtremes, 极端值/极值
2 W7 X! {4 c- Y8 U3 }7 kF distribution, F分布
. A; E! \7 t2 W( }5 Q+ o/ iF test, F检验: l9 C4 c, m% I& [$ F ?& s: W
Factor, 因素/因子
w& Z& G3 E% s' gFactor analysis, 因子分析
5 U ?! N0 B- z1 y: eFactor Analysis, 因子分析
) u' w' a8 V8 s' I! B# }) l2 \Factor score, 因子得分
; t6 u' E3 G' Y: y( L \& FFactorial, 阶乘
0 a& n9 q8 O) w) MFactorial design, 析因试验设计- J8 j$ j9 {" W* [
False negative, 假阴性7 U( w( E7 h5 N0 M& [- B* a
False negative error, 假阴性错误. Z$ k: w6 p0 @" V2 B
Family of distributions, 分布族, L/ \% `* {6 d( Z/ O- ?
Family of estimators, 估计量族
" K. M+ u. }4 S0 o! q. k D, MFanning, 扇面1 V. @+ a" O6 {
Fatality rate, 病死率
7 F% i/ y, ^- y- |Field investigation, 现场调查
6 A0 m$ S$ F4 I; M+ X2 `Field survey, 现场调查* o" @% ^. w! F) r! K9 M
Finite population, 有限总体. y. x3 h- ? h
Finite-sample, 有限样本' Q" j3 b6 ?( J
First derivative, 一阶导数
1 _8 x/ T2 x+ ~& |& yFirst principal component, 第一主成分! X9 |6 G0 A* N
First quartile, 第一四分位数" N, E+ f" o$ `0 ] F0 ?) I2 G( W
Fisher information, 费雪信息量
3 B; G0 O% K& s1 [% D6 kFitted value, 拟合值' L1 E, o, `4 C5 O
Fitting a curve, 曲线拟合7 l& P# F2 k z
Fixed base, 定基
9 M0 H0 Y* n9 W6 B" i* k7 JFluctuation, 随机起伏 K* }$ p, C4 U+ @; y
Forecast, 预测
! s* x W. _$ nFour fold table, 四格表
8 r8 o7 q! P* X3 l, S6 S5 bFourth, 四分点
\9 y1 \* a* Q$ V+ V5 a' v' lFraction blow, 左侧比率8 a. w# }3 }$ @& D3 G3 \
Fractional error, 相对误差
% L; i1 o* r: f6 JFrequency, 频率7 ^4 M3 g4 ]- G/ F9 T* m6 n
Frequency polygon, 频数多边图" G0 k( }8 O) P1 k4 ~- M. B
Frontier point, 界限点
; V3 t" A8 V% W9 j! Y. x. rFunction relationship, 泛函关系& p" Q1 A& p" Q$ ~- ~- K
Gamma distribution, 伽玛分布
$ f$ S$ ~+ T" i% q$ z$ `Gauss increment, 高斯增量
" V8 l7 ]% b8 E; Y4 ^Gaussian distribution, 高斯分布/正态分布/ Y3 H) b m$ B1 w! [
Gauss-Newton increment, 高斯-牛顿增量+ c+ i! T w' A# V
General census, 全面普查
3 c3 @ a i+ Q+ ]' gGENLOG (Generalized liner models), 广义线性模型
1 M4 J5 ]+ I& i6 |Geometric mean, 几何平均数* N( ?3 B% z+ m' @- [
Gini's mean difference, 基尼均差6 E. h- \8 B! M5 u$ `. E% u
GLM (General liner models), 一般线性模型
3 Q# H, ~+ R3 ?* x$ N5 dGoodness of fit, 拟和优度/配合度
8 z/ C; L6 M( }6 c* F# MGradient of determinant, 行列式的梯度$ L6 E% d" j8 x$ v
Graeco-Latin square, 希腊拉丁方# Z! F H6 p+ O( E! k) \
Grand mean, 总均值* B3 y7 K" d# X( W* E( G3 }
Gross errors, 重大错误
. W, L) r% k0 ~! H3 ?5 ~% m% F# K0 oGross-error sensitivity, 大错敏感度% S3 x. I# T' m) M* w% ~
Group averages, 分组平均
; j, {- v. _- W" L+ N% w- M- @# ~8 xGrouped data, 分组资料9 a9 t$ l/ J* o* f' W( ]
Guessed mean, 假定平均数+ k: e7 K8 N" G* U4 |5 j' \
Half-life, 半衰期
6 ?" N& i7 z9 a( M% {! A: |Hampel M-estimators, 汉佩尔M估计量$ R7 K8 e4 V5 k0 o4 G0 l5 q; a# L
Happenstance, 偶然事件
5 U; _( K' Z1 X9 ]Harmonic mean, 调和均数. K2 S, |5 J) S X9 w7 k
Hazard function, 风险均数
; n4 h& y& V$ f: p& I/ B. EHazard rate, 风险率4 }2 ]: [3 u! I( W7 D( U
Heading, 标目
, d D) ~0 Y* [& a d$ I* IHeavy-tailed distribution, 重尾分布
& L, G0 q7 K1 [' q! `Hessian array, 海森立体阵
( h9 _0 _. @2 {7 ]6 K: r1 i* ~Heterogeneity, 不同质
* P5 D9 Y9 x( Q7 m, S; n! kHeterogeneity of variance, 方差不齐 5 m; s# @9 z4 C. i, s
Hierarchical classification, 组内分组7 i6 A' G: }! w* g" I; m7 C
Hierarchical clustering method, 系统聚类法
, m/ A4 A+ f1 O: U6 d3 LHigh-leverage point, 高杠杆率点
1 A. |. D; G( p1 c8 q0 T& j$ q1 gHILOGLINEAR, 多维列联表的层次对数线性模型3 \/ |+ P; ~( ~, B( _
Hinge, 折叶点
$ U* u4 P( a6 q8 W+ |Histogram, 直方图
U8 P, m# X& i$ C) c# V! i. YHistorical cohort study, 历史性队列研究 5 H6 u% n; r. b8 R& Y3 [
Holes, 空洞
' R. X* F1 \, R* m$ k/ HHOMALS, 多重响应分析$ i# p; F- W Q
Homogeneity of variance, 方差齐性
5 d# \( U& E8 I3 j- q ^Homogeneity test, 齐性检验- j7 s0 X3 H! ` M! U! F( ?3 {5 c6 o
Huber M-estimators, 休伯M估计量
- H5 \4 ?' Y2 j* K" V* ~% lHyperbola, 双曲线. |4 \1 r, O0 B0 Y: z% l
Hypothesis testing, 假设检验% T+ a& o# Y4 }; B& |+ v Q$ w
Hypothetical universe, 假设总体
# l& e- A" P. EImpossible event, 不可能事件9 a( e3 F' @( w& Q0 J T
Independence, 独立性$ f) |9 M( T" l6 z8 k9 B7 Z( U" G
Independent variable, 自变量
# C7 d& M+ Q8 n9 _& A5 H: C8 a1 b a* OIndex, 指标/指数; c: \. A0 p$ l' G, M" b0 b
Indirect standardization, 间接标准化法
5 P9 R+ M8 \* D( OIndividual, 个体
# H+ [6 z3 X0 AInference band, 推断带9 j+ P' G) F5 ]& P: v
Infinite population, 无限总体( A4 _4 n4 _6 f" V
Infinitely great, 无穷大
! y0 m: [" b6 b$ `- u& \. R+ VInfinitely small, 无穷小
& }& P, N/ K8 g. b$ v6 [. S/ ]9 vInfluence curve, 影响曲线
. X- Q% d G9 \% w' {Information capacity, 信息容量
6 ?4 w+ l5 C, M: P0 O, K( L- EInitial condition, 初始条件/ R" V. \# a. b- s
Initial estimate, 初始估计值
$ ^- | A) P) g! L x6 H( q# EInitial level, 最初水平
* i7 }6 ?2 H; i/ I! G8 X& ?- AInteraction, 交互作用. p2 v( S, B- k- g9 y3 h) E' Z
Interaction terms, 交互作用项
& S. I' F1 [$ ^. F( b2 c2 }Intercept, 截距
# [ U( ?7 i8 G; }3 Y' jInterpolation, 内插法
5 F5 d( `. C7 P' y( ]6 H! b4 XInterquartile range, 四分位距
s/ t. |) a1 I; `) H* E5 uInterval estimation, 区间估计+ X6 B4 K: ]; h% C; r6 ~ T
Intervals of equal probability, 等概率区间: n3 l8 F, {# F% I v
Intrinsic curvature, 固有曲率; c0 v! S) `4 _3 I3 O
Invariance, 不变性1 C7 A4 n1 n% ~9 m; d" q4 F
Inverse matrix, 逆矩阵7 H- t3 u) {- q7 s
Inverse probability, 逆概率
/ ~' N, b3 e* Q2 B2 G2 mInverse sine transformation, 反正弦变换
- ^; k9 ?7 g" [& S7 S3 q& \' @# OIteration, 迭代 / x) _. l4 W+ C
Jacobian determinant, 雅可比行列式
4 h# Q0 E9 U7 b* `. x7 _; D4 p3 k) G# pJoint distribution function, 分布函数5 P; }& t+ F8 d3 o
Joint probability, 联合概率
. F0 x; F7 y8 N: W& P. GJoint probability distribution, 联合概率分布
* Y# Q; A; c4 {" ?0 S$ |5 H, rK means method, 逐步聚类法
2 U1 l! b" V; k' {$ V7 L0 GKaplan-Meier, 评估事件的时间长度 * z) Z/ F" D1 ?
Kaplan-Merier chart, Kaplan-Merier图" d* j5 R3 ?. b% q6 w+ v% Y
Kendall's rank correlation, Kendall等级相关
4 b* }+ \3 _' D5 v" G+ J6 H: ]Kinetic, 动力学
: X5 o5 g5 i( o2 w! H3 E, K& t3 N8 U6 lKolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验
& y; u' S$ F9 b9 z. h \, J. cKruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验& j: s/ D0 ]! e( V l) i3 M, G# b
Kurtosis, 峰度0 q5 o0 ?* z& N# N% K1 \
Lack of fit, 失拟7 Z% G: B& V: H
Ladder of powers, 幂阶梯
6 ]) J! M( M( J" h9 T9 NLag, 滞后0 t, H# g/ n9 ^1 O5 y
Large sample, 大样本
) D; B) I% l8 ~( _5 b, `Large sample test, 大样本检验
5 N' f z: x( W: d' w" [Latin square, 拉丁方
+ X. N; q9 k4 u& D7 iLatin square design, 拉丁方设计" f7 v4 A$ {( S0 x! Z9 @ c
Leakage, 泄漏
/ W9 x, b) m |+ CLeast favorable configuration, 最不利构形/ v+ u. |7 u* J4 D6 @4 v2 ]
Least favorable distribution, 最不利分布 k7 u% F" i" s7 ]& B) Q0 n
Least significant difference, 最小显著差法
8 V& a9 e' q: c. ~7 _0 b! lLeast square method, 最小二乘法
: k3 }! [+ X, v0 yLeast-absolute-residuals estimates, 最小绝对残差估计- d! s# U( R/ ?. ]
Least-absolute-residuals fit, 最小绝对残差拟合* s% ^2 |; H3 O. k( s
Least-absolute-residuals line, 最小绝对残差线
4 [1 E% X! i9 x0 j3 NLegend, 图例
3 t% [2 p9 H, S) S7 \9 oL-estimator, L估计量
2 h9 L( M/ }6 mL-estimator of location, 位置L估计量
9 g6 g7 `. H; _$ r. BL-estimator of scale, 尺度L估计量
' G$ `" U$ [: n5 HLevel, 水平
+ p" t: V: R! } E& P! LLife expectance, 预期期望寿命: B8 @+ M. F$ E1 S
Life table, 寿命表% b: V# X; F* Y
Life table method, 生命表法
) M5 O0 ?( v+ [, ULight-tailed distribution, 轻尾分布9 Q& }3 m; l$ U5 `2 R
Likelihood function, 似然函数
6 r$ i( M f$ y% WLikelihood ratio, 似然比
7 y) O) \1 s+ n( Q3 Q( Rline graph, 线图
, b% F. v4 }9 X9 a: K# c2 z/ KLinear correlation, 直线相关( n% r5 i, k! G! Y, s- {$ J
Linear equation, 线性方程% y( } t4 P7 L
Linear programming, 线性规划
1 I# _5 [4 I' c3 c) N+ vLinear regression, 直线回归
3 H0 {, {9 ^- N" BLinear Regression, 线性回归- X% h, O3 z- U
Linear trend, 线性趋势( B9 }+ m/ s- q. R! F) m
Loading, 载荷
# |' k8 w! [. xLocation and scale equivariance, 位置尺度同变性8 E4 b3 c4 ^9 _( Y! S |
Location equivariance, 位置同变性
0 ~8 @2 Q" g/ dLocation invariance, 位置不变性% v) J- j( b- o; ]& T
Location scale family, 位置尺度族 u) ], J( g' P1 |' \
Log rank test, 时序检验 ^+ @* i9 r6 Q( b
Logarithmic curve, 对数曲线
& }! q* u5 A/ e; U: R# o9 i9 KLogarithmic normal distribution, 对数正态分布
8 T" x- @' G" n' \" ~/ gLogarithmic scale, 对数尺度
7 |. G3 ], a' J9 @ e5 R ]Logarithmic transformation, 对数变换 B/ ~$ H$ q" J* m8 @0 C
Logic check, 逻辑检查
1 H0 \* R+ L: iLogistic distribution, 逻辑斯特分布" V9 S# ^2 k: _8 \
Logit transformation, Logit转换/ M4 V5 B" N9 t9 ^1 P, k1 a
LOGLINEAR, 多维列联表通用模型 % f, u1 b n4 j& K1 a6 d& E+ z! ]
Lognormal distribution, 对数正态分布
0 o6 w& ~" j+ {6 a5 w8 i0 jLost function, 损失函数3 s6 S3 B. ^9 Z
Low correlation, 低度相关
2 d1 v8 a3 b0 f& |; D; r- nLower limit, 下限" ]: u. g9 ^7 |3 d. e$ i ]/ |& L
Lowest-attained variance, 最小可达方差. q* K- r& c5 M9 D2 _5 u
LSD, 最小显著差法的简称
( C& i( e- t! c! D6 ALurking variable, 潜在变量: `6 ~1 a4 j5 v' A
Main effect, 主效应+ M! h4 L' N4 Q5 S+ Z
Major heading, 主辞标目8 A# t9 U$ W7 r8 n+ @
Marginal density function, 边缘密度函数+ P- I( L3 X5 N8 L, I( G' s0 s# Y9 o) V e
Marginal probability, 边缘概率
7 _# m' `6 I( W) r4 b+ EMarginal probability distribution, 边缘概率分布
$ G! c; w2 ?: k, `( uMatched data, 配对资料
6 }' P7 F4 t. ~3 a$ d, ^* B8 O oMatched distribution, 匹配过分布
o5 H5 ]! x7 |) B- p: FMatching of distribution, 分布的匹配. `9 I; M' D( E) p$ {
Matching of transformation, 变换的匹配
! T6 [8 ?; {3 @- R5 oMathematical expectation, 数学期望
8 {% ^* S+ B8 ]6 X' s0 LMathematical model, 数学模型' @* j$ B- W9 v! I% F, _ b
Maximum L-estimator, 极大极小L 估计量
0 ]3 v% j2 X! c5 V# YMaximum likelihood method, 最大似然法1 h0 W9 X7 W2 @ W9 X: T" e, K6 ^/ [
Mean, 均数; R b, l0 b% b
Mean squares between groups, 组间均方2 _) i' j* D* J% K) U2 E2 P
Mean squares within group, 组内均方
0 ~" I4 z% P! E: X- eMeans (Compare means), 均值-均值比较" a2 E# \' a: l8 \* L# Y
Median, 中位数
/ S+ r9 B) T rMedian effective dose, 半数效量
+ T% n& [5 k Q: L1 C# N0 UMedian lethal dose, 半数致死量
2 [* f9 K+ f! k9 Y8 Q# B1 sMedian polish, 中位数平滑9 h/ ?+ \* n+ R9 f1 {
Median test, 中位数检验
: A9 \+ G3 C8 s" Q. x5 K4 ]+ jMinimal sufficient statistic, 最小充分统计量, ~* j" O2 H6 }! P# p: U
Minimum distance estimation, 最小距离估计
: F0 Y, w! h. t% e2 Z! f& \Minimum effective dose, 最小有效量6 t& P6 d+ {9 l5 s! {
Minimum lethal dose, 最小致死量
7 Q* x2 t9 J+ ?Minimum variance estimator, 最小方差估计量2 F$ _+ ^+ {7 g% P: N
MINITAB, 统计软件包
+ i% j5 F/ ^; B% W3 f yMinor heading, 宾词标目
' w3 X- ~# b0 B4 Q0 aMissing data, 缺失值
5 D2 r n, {; u9 n( N- GModel specification, 模型的确定+ ^0 `) ]! Z8 V' a! u# a
Modeling Statistics , 模型统计
- y0 C' m' q9 n: qModels for outliers, 离群值模型1 W6 T" h5 ]6 c% ?7 p$ i$ c
Modifying the model, 模型的修正
; ~: d7 E3 {2 h9 q" ?Modulus of continuity, 连续性模' [ @! o6 C/ i
Morbidity, 发病率 * ~( d2 y A: c A5 e2 X! r j, p
Most favorable configuration, 最有利构形
d! n( D- C6 o* @1 CMultidimensional Scaling (ASCAL), 多维尺度/多维标度( F2 D2 B8 ^+ d- i( N+ n
Multinomial Logistic Regression , 多项逻辑斯蒂回归) B) M4 }% I* L& v' h7 z
Multiple comparison, 多重比较
( z0 \0 d' n0 ]Multiple correlation , 复相关
) r" |4 u& P* }; F- hMultiple covariance, 多元协方差
8 x1 w3 {' q7 ^Multiple linear regression, 多元线性回归) \ B0 D' E& H9 _! R5 V
Multiple response , 多重选项
3 W: B0 ^+ W1 \8 K' I, k3 ]Multiple solutions, 多解
+ k) w- U- b; z7 i FMultiplication theorem, 乘法定理
* R* b8 _: h9 @. ] E( b2 ?Multiresponse, 多元响应8 B$ K9 ^, g, u: u
Multi-stage sampling, 多阶段抽样
1 t8 z( r2 k. Q% ^ b/ JMultivariate T distribution, 多元T分布
& t& E( | Y/ Z1 d% Y1 fMutual exclusive, 互不相容: j. y& c% n: T& o
Mutual independence, 互相独立
, w0 A! v. q7 [Natural boundary, 自然边界/ g1 X7 |7 i$ T8 z# s/ E+ b
Natural dead, 自然死亡
3 R' a" W% R0 b. h0 }Natural zero, 自然零2 q( u4 ?, z e7 c- I, e4 Q
Negative correlation, 负相关
' ~1 X, H9 Q$ ^! n& T) ^: r$ p& wNegative linear correlation, 负线性相关0 g3 a& w+ E# B) V) t
Negatively skewed, 负偏
; d+ }7 x1 |) @" QNewman-Keuls method, q检验
9 q& U o8 n3 y6 L3 {NK method, q检验
' V3 G7 j5 c: b* A0 C& u# ]No statistical significance, 无统计意义- M& m% T7 ]: ^$ G- \+ z3 M- W
Nominal variable, 名义变量6 X' J( m* a1 V( a% A) S
Nonconstancy of variability, 变异的非定常性% x% d, y0 g' S& u/ ]& N
Nonlinear regression, 非线性相关
1 p; C/ g4 ?+ n$ ~. ~Nonparametric statistics, 非参数统计+ T6 N7 m$ N2 \5 M7 t' Q) u
Nonparametric test, 非参数检验. n+ s: r" F$ ]" T0 h
Nonparametric tests, 非参数检验0 y d) x- G6 |% w
Normal deviate, 正态离差
% [' F j" F5 x* e* oNormal distribution, 正态分布0 R; E& X. b7 ?4 h
Normal equation, 正规方程组9 v' x8 y* ]8 v0 A$ S, o. F" ?
Normal ranges, 正常范围; L$ H7 P$ R+ G+ ~% I
Normal value, 正常值" t: H$ N. W( L8 V
Nuisance parameter, 多余参数/讨厌参数' K8 A6 u5 R! N4 A4 S; T
Null hypothesis, 无效假设
* X |- ?4 R& R* ?& uNumerical variable, 数值变量
# K) e' Q- I4 L4 l+ YObjective function, 目标函数
; E0 s& x0 }4 |, \: n5 z4 B$ x1 Q8 OObservation unit, 观察单位
9 a& R: T& Q. [# a& u u" U7 O; D/ IObserved value, 观察值& B" X7 q. v" n) E6 G3 N1 z
One sided test, 单侧检验 A* b, V2 W5 c7 `0 H0 i
One-way analysis of variance, 单因素方差分析3 j4 \. C' x: s5 W0 r
Oneway ANOVA , 单因素方差分析$ r, Q, T) M; R( X
Open sequential trial, 开放型序贯设计
/ d" T- m) t" M2 _; _Optrim, 优切尾
6 @& d/ n4 S; f; y7 b8 l7 j/ jOptrim efficiency, 优切尾效率/ ^$ ~' b, H6 J5 I! b
Order statistics, 顺序统计量3 G; N, E$ t1 K! `
Ordered categories, 有序分类
* n3 V1 G, _6 P/ U4 \Ordinal logistic regression , 序数逻辑斯蒂回归
) S2 ]; y9 U) D5 d* M7 }: wOrdinal variable, 有序变量
* q H* v! j/ f. gOrthogonal basis, 正交基+ ^: j: u8 ~# |
Orthogonal design, 正交试验设计" _9 ~4 f' |- Z5 N6 L2 B% n3 N. h
Orthogonality conditions, 正交条件 O0 f% C4 ~. {2 a* @: f5 ?
ORTHOPLAN, 正交设计
: |3 _4 m& \ E. QOutlier cutoffs, 离群值截断点
$ T3 {; c& w6 O% JOutliers, 极端值# x& E) e; E0 s' y4 r8 J
OVERALS , 多组变量的非线性正规相关 & V" E0 ]3 m) V1 B+ C' N/ V
Overshoot, 迭代过度
* y* d6 H8 `9 \; }Paired design, 配对设计
( }8 v- R9 G9 j r/ ]3 Z' fPaired sample, 配对样本! U6 k; Z1 z7 ^5 O+ ^$ v
Pairwise slopes, 成对斜率
, n4 h3 K2 |' }/ A9 J( F! Y1 o$ DParabola, 抛物线
3 Y* M8 T4 R4 W; _( OParallel tests, 平行试验$ r# I+ Z) E' E: m6 i1 u) Y! Q9 o
Parameter, 参数
( R: D+ V2 [( {7 G. b! v- bParametric statistics, 参数统计9 K$ N: _$ {8 O- K; F' D" H
Parametric test, 参数检验: a K+ U0 B* ?4 m1 u. |- ^
Partial correlation, 偏相关
. ^8 S: i6 N1 H; v0 e2 APartial regression, 偏回归
& m$ Y6 x/ t: x$ DPartial sorting, 偏排序" q$ x, h1 t6 b3 |. V
Partials residuals, 偏残差
) S, Z6 U( p: `' N, Z/ sPattern, 模式
2 `' Q7 m& @ i; sPearson curves, 皮尔逊曲线( a/ V" O: L" Z
Peeling, 退层
% F3 w+ P% C1 F7 UPercent bar graph, 百分条形图
: c* ?6 x- R, y7 x1 z' I2 t* PPercentage, 百分比
! [! O$ s3 }8 D1 ^# c& g, dPercentile, 百分位数
5 }" m) y* J0 E4 q6 Z+ aPercentile curves, 百分位曲线
4 S9 A( D4 |2 b2 [3 u/ CPeriodicity, 周期性
5 b) e: u3 B/ v3 o* n# {& \# ZPermutation, 排列
/ q' Z4 G& i7 Y9 h9 q8 j3 Q+ b, T1 lP-estimator, P估计量5 I/ ?) y( ^6 u; z9 Q- R5 m5 |
Pie graph, 饼图
% `* o7 D4 L. r) c# n8 v+ a8 FPitman estimator, 皮特曼估计量
9 p: v/ I% S. }Pivot, 枢轴量
; k/ ?" @- h8 z$ k' Y& H/ O6 F( SPlanar, 平坦& d% E/ _( K- d( x/ ?7 ]7 A
Planar assumption, 平面的假设8 K) H, x: [5 q: T6 A
PLANCARDS, 生成试验的计划卡
5 l+ R# a# V; W( t6 }5 Z' [Point estimation, 点估计
, v( W6 w" {& q! u# j8 N4 vPoisson distribution, 泊松分布
# s" N6 a8 A0 @5 BPolishing, 平滑
3 Y7 s, T6 k, l1 {4 c' ]Polled standard deviation, 合并标准差, O; h! t- g1 W( N
Polled variance, 合并方差
. j6 R. a0 c8 yPolygon, 多边图% f$ `6 ~/ W7 h
Polynomial, 多项式- f9 P5 ]/ E1 d# l+ |
Polynomial curve, 多项式曲线" C6 \1 }- Z: x( r9 j
Population, 总体0 f* |* B) U: Q. w' R
Population attributable risk, 人群归因危险度
8 d5 K3 {5 L, |/ I9 X9 uPositive correlation, 正相关
5 l' X A, P* K' nPositively skewed, 正偏! y2 S5 E# e7 E6 A! F
Posterior distribution, 后验分布
; ]2 `; d9 ^6 }1 ?5 t$ b2 y/ H: q9 @Power of a test, 检验效能1 V2 Q+ l& g: Z
Precision, 精密度
. a6 J2 F. P3 ~, T4 Q3 y DPredicted value, 预测值8 E0 n5 x5 d O4 }2 Z
Preliminary analysis, 预备性分析9 o# m$ r- ~9 _* O' b
Principal component analysis, 主成分分析: B* n' r* ]$ f: V+ j
Prior distribution, 先验分布
. o. j) ^) _ c+ J' PPrior probability, 先验概率
1 ]/ o0 M2 |2 k+ C9 pProbabilistic model, 概率模型! E( x4 Y5 L ^
probability, 概率# i r6 K8 {' O& a8 [5 a8 P! J; l8 [
Probability density, 概率密度
% B/ ?( O9 g) j, t& Q& C4 ]; aProduct moment, 乘积矩/协方差1 o. k7 @( F3 I
Profile trace, 截面迹图
. f( }) _8 D+ ~* \Proportion, 比/构成比- i; _& d/ v, R
Proportion allocation in stratified random sampling, 按比例分层随机抽样
0 D3 [+ K6 K9 J1 N, TProportionate, 成比例
2 T0 O) Z+ J$ `4 ^6 jProportionate sub-class numbers, 成比例次级组含量
( k$ Y; W% D& I, c$ Y, @' f! DProspective study, 前瞻性调查
" a w. o5 x6 a/ YProximities, 亲近性
0 K0 k5 M+ |7 E8 E- j7 |Pseudo F test, 近似F检验7 D- j6 _" G5 a4 X8 B% O3 ~" z
Pseudo model, 近似模型+ [) a8 Z6 r$ M# F, c
Pseudosigma, 伪标准差
, b0 j, |8 U! `3 a4 Y( r3 BPurposive sampling, 有目的抽样; _$ h4 D% ?: ~6 i3 e# t8 O. r
QR decomposition, QR分解
7 t- p( H8 _& }% i+ W" sQuadratic approximation, 二次近似) d) A3 ^' L1 [. t
Qualitative classification, 属性分类( W1 U v) B2 } A5 d2 Z
Qualitative method, 定性方法
, F, T/ j/ G- h! g% a. U; \Quantile-quantile plot, 分位数-分位数图/Q-Q图
2 {/ z9 E; c% m+ E5 B& IQuantitative analysis, 定量分析
* Y& W+ R. L5 H; T; w; {Quartile, 四分位数
4 k0 D* o3 L+ k aQuick Cluster, 快速聚类! S+ d& X! L+ U9 H8 U
Radix sort, 基数排序
4 i: B1 K/ s! e6 a, d& bRandom allocation, 随机化分组
2 J- i0 n! s" z' V9 Y" URandom blocks design, 随机区组设计; n$ I6 V! H M
Random event, 随机事件# p; D' a( M& U
Randomization, 随机化
" ^. d- ^) ~1 r! L- yRange, 极差/全距8 D% |3 G* _/ S6 l, j
Rank correlation, 等级相关
5 R$ p* ?3 Y) sRank sum test, 秩和检验
! B7 H5 a( t# e0 f8 j7 sRank test, 秩检验
$ n5 X/ c# E- HRanked data, 等级资料
`, n# e: ~7 x3 x, `Rate, 比率 F5 t% e9 a* `
Ratio, 比例
3 K: P6 k; E. dRaw data, 原始资料
4 K5 U! p8 i: LRaw residual, 原始残差: y! ` ]; R, \
Rayleigh's test, 雷氏检验3 Y( G$ |& P/ y6 k8 C1 Y
Rayleigh's Z, 雷氏Z值 2 ~) a6 d. S* B, z D5 d; @
Reciprocal, 倒数5 r: A+ }$ M5 c8 i
Reciprocal transformation, 倒数变换
, h# D: Y. j8 `* x, cRecording, 记录
( ]1 |+ C- ?7 t+ Q! r3 fRedescending estimators, 回降估计量
' `1 M0 b6 m& }+ v9 g" N% {8 n `# }9 EReducing dimensions, 降维
. G8 }2 S& @& S$ h" B) [# tRe-expression, 重新表达: u" x! e9 S/ U4 q8 J! |
Reference set, 标准组" t" G% N$ i( }' y
Region of acceptance, 接受域
; v5 M9 Q' P {9 q# h9 qRegression coefficient, 回归系数( [& c9 m U5 A# _( j
Regression sum of square, 回归平方和
9 `6 p# f1 f0 j ^% TRejection point, 拒绝点
" @" A8 H2 L. ORelative dispersion, 相对离散度
( h _$ j6 c6 y) T/ x/ }Relative number, 相对数
4 a4 a- Z x8 RReliability, 可靠性
' x; Y6 t; H# t5 hReparametrization, 重新设置参数
7 f" F8 j+ W0 \/ wReplication, 重复( I& c' |5 d: O1 u d' T
Report Summaries, 报告摘要
2 c+ Y# W6 [: ~7 N2 YResidual sum of square, 剩余平方和
2 Q$ a5 q- w$ D6 a. W+ p y1 F6 L" I s KResistance, 耐抗性
; L. k& o) o0 I+ K% w6 H/ V) EResistant line, 耐抗线3 I( C5 y- q* R, L- c) Q% a8 z
Resistant technique, 耐抗技术; i6 ?1 z# L) s) n! a& }+ ?5 |7 p1 }
R-estimator of location, 位置R估计量
+ x i7 i# N- S9 n( u! CR-estimator of scale, 尺度R估计量( [$ ~: j# U0 d8 v. g. A; @- D
Retrospective study, 回顾性调查9 k9 |/ ?- j: Q$ \9 m
Ridge trace, 岭迹
2 }" p9 W7 s* c2 Y( [Ridit analysis, Ridit分析
& n9 W* M. J( y& ~4 W) L, y# u4 K% DRotation, 旋转
; U7 O# t0 u$ f9 B* _" wRounding, 舍入
8 Q2 ] q8 l! D" dRow, 行
) \$ Y1 Z8 P. T, d* zRow effects, 行效应) s7 D3 C- W% O0 j6 y6 A
Row factor, 行因素
, T0 h6 G$ g; }0 l5 E. d& @; }RXC table, RXC表3 s% z: x% K3 a8 f$ L. L
Sample, 样本
2 ^# ^& ]% }6 F" b: F9 _. P# kSample regression coefficient, 样本回归系数
4 }% Q9 v t# |6 I& X/ VSample size, 样本量
8 @6 ?! e1 P9 d1 A' V$ QSample standard deviation, 样本标准差
4 {$ T; l5 K" p2 CSampling error, 抽样误差
. @3 f4 z: O m# I5 s2 lSAS(Statistical analysis system ), SAS统计软件包
) H) D @* p& m2 xScale, 尺度/量表
1 x9 C% O8 J c2 i' d0 ^- s/ u1 cScatter diagram, 散点图+ z1 q s W7 ]( k
Schematic plot, 示意图/简图
2 R, f+ I2 F$ B8 zScore test, 计分检验
" p$ m! W$ \. q, ]+ nScreening, 筛检
& X) w% W. ]( M) b3 B% RSEASON, 季节分析 8 U# ^# n' [0 x, L# Z
Second derivative, 二阶导数& B: R! N; W" H5 q& b
Second principal component, 第二主成分. Z: r' o% V. Y- E. _
SEM (Structural equation modeling), 结构化方程模型 7 j: P9 O- R/ k. _
Semi-logarithmic graph, 半对数图
/ \8 k, j$ y4 X% h0 @+ {7 ]Semi-logarithmic paper, 半对数格纸( y+ J: Q9 F1 Y+ w9 ] I/ r% V
Sensitivity curve, 敏感度曲线
8 p [; T$ @; p4 qSequential analysis, 贯序分析' g" G- E1 g. W8 r* y
Sequential data set, 顺序数据集
1 r& K0 o. ~+ {8 e4 r. P7 LSequential design, 贯序设计. n% S" i5 l2 w8 z) G
Sequential method, 贯序法& M7 u& z/ i9 O7 p$ c( N
Sequential test, 贯序检验法: B% s3 H! d4 s S
Serial tests, 系列试验3 Z8 Y! w+ M# ^. ?; W
Short-cut method, 简捷法
2 X3 r4 C _) ^Sigmoid curve, S形曲线
d" j2 V; k1 r8 n' _8 kSign function, 正负号函数
2 R: M" [0 |7 x# ZSign test, 符号检验
. {0 o3 J9 A" b; ?' B+ [- N# aSigned rank, 符号秩9 o6 O: W7 W/ L3 ?' {" {5 Y) O5 L
Significance test, 显著性检验3 n5 b# E1 x) [" j" `. h2 r
Significant figure, 有效数字
- W/ h5 n% k: `2 S( P5 z) N' OSimple cluster sampling, 简单整群抽样. u# y3 o \1 e7 r( X1 U
Simple correlation, 简单相关. ]( Q. }# ?) u* S6 F
Simple random sampling, 简单随机抽样9 x2 K4 S# ~* X$ ~( `7 T% w. ^
Simple regression, 简单回归5 `% _ M, Q, u( i# @) o
simple table, 简单表
9 R5 e* S! s! w! ?& m6 i; \ j3 \Sine estimator, 正弦估计量
- P( z0 N+ D* D' k. {8 f& `Single-valued estimate, 单值估计" X9 W$ S# A F( i, V; P
Singular matrix, 奇异矩阵" @" A# L2 p' z2 t2 ?
Skewed distribution, 偏斜分布 Q* d2 F J; y: o0 _
Skewness, 偏度
- T( t) v% S% c3 tSlash distribution, 斜线分布
1 S5 w! ~3 J, X* y, W8 YSlope, 斜率" v$ N6 x- z; p
Smirnov test, 斯米尔诺夫检验
8 d' W8 ~) L5 hSource of variation, 变异来源
' T F4 C- k' m: e7 GSpearman rank correlation, 斯皮尔曼等级相关' A% Q* g, z: T
Specific factor, 特殊因子
5 n% M3 q' S' I+ S5 v- cSpecific factor variance, 特殊因子方差# z! B% v1 O! E
Spectra , 频谱' X' B+ t1 u, A8 r1 a9 J+ l
Spherical distribution, 球型正态分布/ w% T, ~0 \1 T8 u; T
Spread, 展布
' j9 d; X) R g& h3 hSPSS(Statistical package for the social science), SPSS统计软件包
% @' F/ `( j7 Z2 V% n" o: {. _Spurious correlation, 假性相关" X& e' ~/ ~. d& d5 m' D
Square root transformation, 平方根变换
0 A5 w( O; j" NStabilizing variance, 稳定方差& Z' L1 n1 k* A0 ~
Standard deviation, 标准差5 h2 U. D9 X( f/ y0 N( i
Standard error, 标准误' U" h1 X9 f* I$ i; ~
Standard error of difference, 差别的标准误: w4 ]$ V& T7 s4 Z0 _7 \ h6 w( F
Standard error of estimate, 标准估计误差
1 `! w! n8 |, B6 c; q; u" ~Standard error of rate, 率的标准误
7 G" k* j# t4 t3 h7 e1 f: X3 h4 v0 EStandard normal distribution, 标准正态分布6 _" }/ K7 `6 g3 R$ ^( [6 |
Standardization, 标准化
+ Q& D+ J9 b3 n( T% N/ v2 ~Starting value, 起始值
/ T5 Z$ P( ~* }" B' oStatistic, 统计量
N( v) S' a% k* \" o3 T3 qStatistical control, 统计控制
, t# H8 }% Z% \1 h( }% TStatistical graph, 统计图
; `* z4 w0 S4 l! [. wStatistical inference, 统计推断
3 S$ P" b( C8 A! MStatistical table, 统计表
( {7 p7 E/ b* Q. {( D, TSteepest descent, 最速下降法% b! ]6 d4 k/ F& c/ Z3 V) o6 R% a
Stem and leaf display, 茎叶图: d+ }- U! I& c6 t* A
Step factor, 步长因子/ Y2 Y& \1 ?3 }% H: v
Stepwise regression, 逐步回归& C" [) r% C4 r- [$ ^/ X4 W
Storage, 存- f) M; r7 _) n9 @5 n' S. l$ s
Strata, 层(复数)
$ T. }: r6 V& c5 j! ]Stratified sampling, 分层抽样4 x. W* t9 r; i% l7 a; m
Stratified sampling, 分层抽样3 w$ i w* ~& H7 D! q
Strength, 强度) Z/ ~) r) K* `# W/ m. F: ~
Stringency, 严密性. C! h8 w% F" Z2 Y5 a2 O; W
Structural relationship, 结构关系
, t4 v, B+ D' J2 K) I6 \5 RStudentized residual, 学生化残差/t化残差
$ o& u7 V, H9 ZSub-class numbers, 次级组含量$ Y( I0 S$ z: U. N( Y
Subdividing, 分割3 j, S P9 r" b9 T4 ^" t% c
Sufficient statistic, 充分统计量
1 e. Q) M, Z$ t: D$ a8 ~Sum of products, 积和& U( o3 `) Q+ `
Sum of squares, 离差平方和
$ U/ p: J% Y8 S/ w$ v/ ESum of squares about regression, 回归平方和
* b7 ]3 I& ^( ^: DSum of squares between groups, 组间平方和7 A6 q9 p# `* W) b. b# r) `/ {
Sum of squares of partial regression, 偏回归平方和
4 Z) `* a0 ?# ~Sure event, 必然事件. j/ d+ |# ^& y* v
Survey, 调查; P% I1 ^& }$ b5 J/ O: v) r: J- X
Survival, 生存分析
8 L* z6 ~1 W a d0 p8 z- X% cSurvival rate, 生存率& x; o' x4 V! G. k* X/ l8 n
Suspended root gram, 悬吊根图
7 Y2 @5 M- \2 N0 s# Z$ P+ j9 O1 bSymmetry, 对称; u3 D8 b; g5 P' [' F2 ? `
Systematic error, 系统误差
# H: h( a, \6 N4 q1 ^8 m2 }# nSystematic sampling, 系统抽样7 o. z1 X- Z, a1 A
Tags, 标签* n; S5 m" {4 I% d f
Tail area, 尾部面积" X, t9 F% \; O9 m
Tail length, 尾长/ H$ {( A! \% u2 C C2 E, ]
Tail weight, 尾重
0 V' f6 ], g5 f6 aTangent line, 切线 [7 |. |; N- ^5 G3 f$ d2 k: ]: r- g
Target distribution, 目标分布2 q3 F+ j# B( M" H9 k
Taylor series, 泰勒级数6 j1 G1 k& i7 \( U3 b
Tendency of dispersion, 离散趋势" w1 Y6 b4 z/ W& n- y9 N! c1 R
Testing of hypotheses, 假设检验
) X) v1 q8 t" G5 s8 ZTheoretical frequency, 理论频数( T* V1 n0 N& L( n
Time series, 时间序列! r# a) `0 p# F- x. V
Tolerance interval, 容忍区间
) X3 o9 T) F# i5 t+ XTolerance lower limit, 容忍下限8 ]/ X" M2 h I
Tolerance upper limit, 容忍上限
7 J* v* V d! k6 w, ATorsion, 扰率5 K% f6 S2 N9 m& d' I3 ?
Total sum of square, 总平方和" V4 n F7 ]& r2 G
Total variation, 总变异
- U0 m" k1 P' B; f& J, [Transformation, 转换
/ `' J" S, A5 _1 ?Treatment, 处理+ _, d. k; x) A% f3 N0 @, R
Trend, 趋势
5 B% l' G; @. |" V: r9 M8 _" `, z+ {6 JTrend of percentage, 百分比趋势
! i; j5 |/ b. w- DTrial, 试验
7 ]* Q. d! M* ?; F$ C+ Z; RTrial and error method, 试错法
# M8 K2 j, u+ V3 K0 U3 l, LTuning constant, 细调常数2 O w" E3 v! L& {! e. P! Q
Two sided test, 双向检验; j9 o* T" {& M' h1 m
Two-stage least squares, 二阶最小平方& e2 `0 L: u; y! \+ a; I
Two-stage sampling, 二阶段抽样* Y' e4 f) A) A# m9 Y% _- N
Two-tailed test, 双侧检验
; q4 q/ ]8 f; @( p' @% d j8 WTwo-way analysis of variance, 双因素方差分析* `! G6 E. E1 p. Z. N N" z
Two-way table, 双向表/ E! g O+ S& Z: M2 K
Type I error, 一类错误/α错误
; y: w1 e- c! R0 q6 i, ?! c& AType II error, 二类错误/β错误
1 b" a' S( ?: u( C# z% uUMVU, 方差一致最小无偏估计简称
6 n; e& J: k2 }6 h$ n/ ?. TUnbiased estimate, 无偏估计
- k" N3 c0 x5 |! x; ~0 U1 e+ VUnconstrained nonlinear regression , 无约束非线性回归
0 K0 x f E8 XUnequal subclass number, 不等次级组含量& a, Y9 a. g) z
Ungrouped data, 不分组资料/ Z1 ]$ d: A' ~1 E" h, I5 R" L* G
Uniform coordinate, 均匀坐标 `. c$ b5 Q" Z( F( C' v' c
Uniform distribution, 均匀分布
6 A' `* s$ k3 I. S% W% z; uUniformly minimum variance unbiased estimate, 方差一致最小无偏估计
5 W9 Y' {4 \* Y+ m9 [1 E9 f5 Z$ Y& `Unit, 单元
8 O3 S- Q4 e6 G5 jUnordered categories, 无序分类
K" x+ f$ u& _% W: aUpper limit, 上限
# Y0 d/ k, K6 C$ F( D* I vUpward rank, 升秩
5 t& E' I: g: n* K$ m+ kVague concept, 模糊概念6 s% |: ]0 ^# B6 A5 g/ Q0 U
Validity, 有效性! W1 U! l, { c& x e" z
VARCOMP (Variance component estimation), 方差元素估计2 B& Y; q" d$ t; \, ?& Z% r
Variability, 变异性
; n/ `8 T% {! P# @Variable, 变量! `% K$ B, e4 I1 e+ M% U
Variance, 方差
- @* y! M1 U) t9 m2 D- TVariation, 变异$ D Z" O, G# A8 ?
Varimax orthogonal rotation, 方差最大正交旋转
, K/ s% J3 g, R1 m) V' J: UVolume of distribution, 容积4 x/ }$ r0 m7 k: j; N; l1 o
W test, W检验
2 Q3 ]$ C$ T) C* Z: h$ _Weibull distribution, 威布尔分布9 U. m7 |7 A. K. a
Weight, 权数
. J& K( p& [0 Y, m: h5 IWeighted Chi-square test, 加权卡方检验/Cochran检验
9 J6 V8 [5 w$ r6 h4 d9 w- ~, |4 iWeighted linear regression method, 加权直线回归# G) p e$ H- b0 V; D, R4 ? a
Weighted mean, 加权平均数6 x/ `3 z9 D1 L$ ]) S! h6 q+ ~
Weighted mean square, 加权平均方差
& Z8 }) z F1 a' p4 n0 tWeighted sum of square, 加权平方和
6 ]0 x( x, [, f8 xWeighting coefficient, 权重系数# N% p; M9 r# k9 c1 b. K0 P
Weighting method, 加权法 4 u7 S9 `8 \% h4 q, X
W-estimation, W估计量" F1 c: o# N, x( U9 E2 v
W-estimation of location, 位置W估计量
( }) V5 M3 v: q/ M) QWidth, 宽度
6 H F& }: t: P* }" GWilcoxon paired test, 威斯康星配对法/配对符号秩和检验/ L" v* K& j" |# E# ]
Wild point, 野点/狂点, X% H! J$ i6 w- H) u( X' y
Wild value, 野值/狂值& e4 j8 S5 _9 |2 e+ |# b4 V- J& a
Winsorized mean, 缩尾均值
. ^1 K# `2 L9 C$ O) r s# V0 Q# G- \Withdraw, 失访 + o; z1 ]1 x$ m! j8 ]/ |
Youden's index, 尤登指数- i0 `8 [# n) X; D: ?) H1 a0 {
Z test, Z检验# I! ?7 a8 ]. B" d b7 B; i# v
Zero correlation, 零相关
$ }& J) W2 D5 G/ |+ u) t: W c& k# pZ-transformation, Z变换 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册会员
x
|