|
|
Absolute deviation, 绝对离差
; M h% L8 E- q: r( p4 }" R( r. @Absolute number, 绝对数2 F5 S4 `! y( I) u0 `7 L: C N
Absolute residuals, 绝对残差6 }0 O @! E: B4 \% u: }, f3 Z5 F
Acceleration array, 加速度立体阵/ n; `- B' K' f _( I
Acceleration in an arbitrary direction, 任意方向上的加速度
: W$ I4 N* ^/ t) s+ Q7 A# AAcceleration normal, 法向加速度
. o' J) }% I# a* gAcceleration space dimension, 加速度空间的维数
+ I4 C" o6 C, M, t& g2 eAcceleration tangential, 切向加速度
% u. I3 v3 F% k& A/ I, NAcceleration vector, 加速度向量! ?7 E( T+ z" W. z1 G
Acceptable hypothesis, 可接受假设
. x X# M- i& tAccumulation, 累积- d# y6 P3 R; K) v( d2 T( ^" Y% _
Accuracy, 准确度
S- s; E" L+ d2 E3 ^Actual frequency, 实际频数6 O2 l' Y7 X8 C" W0 a
Adaptive estimator, 自适应估计量: e# B y! q4 a" k
Addition, 相加
, ^8 _, n% l* S1 n* a5 A7 HAddition theorem, 加法定理
+ R# Z3 |' F' I/ SAdditivity, 可加性* f' L) z$ J) z- z7 s+ {! N3 L
Adjusted rate, 调整率% @/ M& N( w& m* Y: G/ D; X @
Adjusted value, 校正值3 x" E; {- A: a! W" m
Admissible error, 容许误差
3 E m, i. a2 U& Z+ AAggregation, 聚集性9 x! X! T& q' D$ Y p. e, \# n" a n
Alternative hypothesis, 备择假设# X `, J/ d) @5 c) x
Among groups, 组间
! u9 @4 Z0 |- e6 T4 o5 p/ Q' vAmounts, 总量+ [0 @: S+ K T8 k
Analysis of correlation, 相关分析 w% l6 g& s( s% d
Analysis of covariance, 协方差分析
; {9 N& d2 G+ e H8 X7 ~" r) yAnalysis of regression, 回归分析 B9 ~- \! C/ }
Analysis of time series, 时间序列分析
3 ]' p* `* g0 k$ sAnalysis of variance, 方差分析0 _& Y* t! Q+ A8 y# f
Angular transformation, 角转换# l& U8 n/ |- v
ANOVA (analysis of variance), 方差分析( U! m9 D/ j: A
ANOVA Models, 方差分析模型1 L7 w! c8 E% E
Arcing, 弧/弧旋
/ s" J5 w% ]+ E" BArcsine transformation, 反正弦变换
1 x- g w. [* a, B4 I7 S, fArea under the curve, 曲线面积5 p$ M5 `8 v8 p9 v3 P. p; Y$ d. J
AREG , 评估从一个时间点到下一个时间点回归相关时的误差
) `' p& x1 n9 I* U- w2 h) yARIMA, 季节和非季节性单变量模型的极大似然估计 ; I6 | {% ^- k# c6 _
Arithmetic grid paper, 算术格纸
: U# [0 X4 T2 V/ d1 e' H1 k& fArithmetic mean, 算术平均数, u, T$ Q3 b+ O1 f; ?
Arrhenius relation, 艾恩尼斯关系
* [! }! i* U1 M# |) C: L3 U _Assessing fit, 拟合的评估
2 M. o6 {# q* Y" t" u/ cAssociative laws, 结合律
; t, t3 H$ s& r. `9 O& EAsymmetric distribution, 非对称分布
0 E% m7 Y3 p/ f3 Z7 UAsymptotic bias, 渐近偏倚
1 ?1 ]( l+ w+ C7 ?/ F& TAsymptotic efficiency, 渐近效率
9 r7 Y5 o) z( JAsymptotic variance, 渐近方差
0 A# X! Q' z! F5 ^% VAttributable risk, 归因危险度! d3 R" O+ R: G9 B) E& Q
Attribute data, 属性资料
% T7 v/ H' s# j* s1 }- g: PAttribution, 属性, @3 o# r9 G- q" P6 B
Autocorrelation, 自相关
* \* {# M5 `, A: m/ h. J xAutocorrelation of residuals, 残差的自相关
8 N* N! S6 b2 O/ z: [; ], S! g# xAverage, 平均数/ V( ]4 }( O; R( \% W0 }' O
Average confidence interval length, 平均置信区间长度/ E* [6 R$ h, Z# d1 T" s8 p
Average growth rate, 平均增长率
. F, L. \- u/ i g8 fBar chart, 条形图
8 m" e& t5 z4 k( xBar graph, 条形图# W4 w& ?6 v) O/ V& F( d4 {
Base period, 基期
' B% V1 v- B/ ?Bayes' theorem , Bayes定理# U4 v1 N5 p) f/ V1 t4 T/ ~
Bell-shaped curve, 钟形曲线5 T* E. d2 I! u$ ^
Bernoulli distribution, 伯努力分布 X! C3 R! V% n) s% m- X0 I
Best-trim estimator, 最好切尾估计量
( J8 ]- w6 v2 \4 YBias, 偏性
' b/ b! } b1 }, N7 j2 H) |Binary logistic regression, 二元逻辑斯蒂回归
# U8 `7 N" T1 I2 K' ^; fBinomial distribution, 二项分布/ _. y2 U0 W5 @3 t9 }$ M4 O
Bisquare, 双平方
% y2 A. ?# _5 R/ Z+ MBivariate Correlate, 二变量相关
% H; B5 _7 `2 x- p( `6 MBivariate normal distribution, 双变量正态分布
" [5 V: I3 d! z: S& i' MBivariate normal population, 双变量正态总体2 K- B, w: l5 D# t# U
Biweight interval, 双权区间; S; I% j6 y ?. p. {7 |7 R
Biweight M-estimator, 双权M估计量% A% q r8 \- l8 K* b& }3 L b3 e
Block, 区组/配伍组9 u2 M/ h- {# `3 B" ]! X% W% p. d
BMDP(Biomedical computer programs), BMDP统计软件包% U+ d. F% W8 k- b6 n9 V
Boxplots, 箱线图/箱尾图
* [4 Q8 q# ?" PBreakdown bound, 崩溃界/崩溃点( I, r0 C4 y4 n
Canonical correlation, 典型相关
: @0 E6 y3 P! h9 }8 y- e! g: vCaption, 纵标目
0 Z+ d: h/ j( e; l% c7 ~, `Case-control study, 病例对照研究5 p7 J4 ~, K5 `& Z$ J
Categorical variable, 分类变量8 }3 f0 O, M d' S) _
Catenary, 悬链线
( b7 ]8 d: B9 F7 y9 Z% r( ]Cauchy distribution, 柯西分布
" B, @- @9 f, \8 S/ r2 |5 pCause-and-effect relationship, 因果关系, |5 ^' t. o0 y! Y7 z
Cell, 单元
e/ x4 R) _% A ]3 zCensoring, 终检5 v1 s$ G9 {" V- Z7 \
Center of symmetry, 对称中心
+ x. G; Z$ {3 `( H. F1 n% L# iCentering and scaling, 中心化和定标! e; n2 t2 |8 k9 V3 h, l: n4 c) v
Central tendency, 集中趋势
0 C! r/ Q4 b3 x( @- i9 f4 ]* q P* m" UCentral value, 中心值2 M( H, T$ b7 y P. \
CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测
W; r8 s* g" ~/ SChance, 机遇' K6 `" a% ^2 J
Chance error, 随机误差% a8 V, ?0 z: K7 |8 C, Q
Chance variable, 随机变量2 A% j* P' F5 |5 t9 N
Characteristic equation, 特征方程7 T, ^' g2 l$ V+ V. e/ ^2 c% t
Characteristic root, 特征根
- J$ o! C8 z: s/ S& w; V @Characteristic vector, 特征向量( k" R$ R8 Y. x; X1 ^3 f
Chebshev criterion of fit, 拟合的切比雪夫准则/ [7 C) m+ C) b6 y+ v3 V' n; v
Chernoff faces, 切尔诺夫脸谱图, B1 z" B j9 F# n7 s9 F
Chi-square test, 卡方检验/χ2检验
" U+ \: r' r2 p' W( ~Choleskey decomposition, 乔洛斯基分解 ]4 D6 t+ \/ B# R! r5 c. G( C7 M3 [
Circle chart, 圆图 ) O8 Z+ F9 Z3 S
Class interval, 组距
1 S" i9 d$ T( y; R7 |7 UClass mid-value, 组中值( C7 w7 B. x: Q
Class upper limit, 组上限0 ]* ^* d6 L5 f8 Y
Classified variable, 分类变量 _' h8 A) w$ @8 l u4 C* l- C
Cluster analysis, 聚类分析4 m) C1 N" f1 Y q' d$ X4 @
Cluster sampling, 整群抽样& D! {0 n. e* B+ C! `
Code, 代码
9 m! F) Y. l/ \! |4 k2 D9 ZCoded data, 编码数据" E. `! e# _9 s. n* @$ Z
Coding, 编码4 ]/ q A3 r, @. f
Coefficient of contingency, 列联系数% Y1 m8 X8 I/ j2 e* |4 l
Coefficient of determination, 决定系数
' |; ^0 H' m+ F+ KCoefficient of multiple correlation, 多重相关系数
* h& d; ^; u1 J7 R( C7 N9 WCoefficient of partial correlation, 偏相关系数
6 f! |; T9 }# O4 YCoefficient of production-moment correlation, 积差相关系数
K3 V' E& N' ~6 l; uCoefficient of rank correlation, 等级相关系数
1 c3 O- }4 q m! FCoefficient of regression, 回归系数3 p/ t; q- {# W
Coefficient of skewness, 偏度系数
0 E H! r. d& r# oCoefficient of variation, 变异系数
' i H+ z r8 `. F& G* rCohort study, 队列研究0 k6 K0 i4 P( q) r8 s4 ~
Column, 列
/ f$ Y8 w5 W( x5 g3 L9 C" e" y& `Column effect, 列效应' ^% R, L7 C Q# e
Column factor, 列因素- c- i4 A, ^, i$ S( ^% l
Combination pool, 合并
/ S" O; o" O2 ^( w% [* VCombinative table, 组合表
8 G2 o3 u8 b# h: ^$ sCommon factor, 共性因子
# K& ^1 Q2 M L% X/ fCommon regression coefficient, 公共回归系数
9 n' s0 m1 D7 a( y5 eCommon value, 共同值
# X3 s$ J4 a* b/ M4 R; k& }Common variance, 公共方差4 `, Z1 k4 g6 c/ r% N
Common variation, 公共变异6 S3 G" C; _; L) w: E3 B% G, O
Communality variance, 共性方差" g5 F( U6 t5 \6 c ~
Comparability, 可比性0 X* L8 c3 _- t$ E# o/ d: R+ L
Comparison of bathes, 批比较; g3 g# K$ A) L( f5 F5 A, o1 s2 I
Comparison value, 比较值6 I" K9 Y7 |0 b* F0 M! [
Compartment model, 分部模型2 n |" x, k: Q) N6 }) v
Compassion, 伸缩
, `* `/ I* ]8 s( NComplement of an event, 补事件
1 k( S0 u2 y9 e7 [, b5 sComplete association, 完全正相关0 s/ x9 t, C ]7 A5 L6 D
Complete dissociation, 完全不相关 C% c. [5 }) T1 k9 i4 ^7 j+ |
Complete statistics, 完备统计量6 X6 j2 V6 |) F8 S, @, @. P
Completely randomized design, 完全随机化设计
6 [4 o, n1 w. W$ UComposite event, 联合事件$ m# i! f. m7 w9 O" y8 [
Composite events, 复合事件) v, k9 b" I9 N8 n% h4 P
Concavity, 凹性
$ [$ p: H% @; A$ ZConditional expectation, 条件期望
" ]( g$ a; |" L3 _- q0 O2 ZConditional likelihood, 条件似然
* B) |& A$ k- H: n2 t7 pConditional probability, 条件概率' }5 y2 }+ c/ Y) H o; J8 S- t
Conditionally linear, 依条件线性; S; I' g# t2 N& X/ q. q0 m7 n
Confidence interval, 置信区间
! U* `$ C: h. \Confidence limit, 置信限
! Y" J* H. m, sConfidence lower limit, 置信下限
9 M( }! e1 V3 p* n, d( |7 tConfidence upper limit, 置信上限8 K6 k% {3 B4 T V8 w: b
Confirmatory Factor Analysis , 验证性因子分析; T. d ~) u5 V+ C
Confirmatory research, 证实性实验研究$ y/ D- `/ j9 K/ F
Confounding factor, 混杂因素) O* _. U4 x1 w0 R
Conjoint, 联合分析& t% \. K6 q6 C/ p2 I0 l
Consistency, 相合性$ i }; Q: D3 D
Consistency check, 一致性检验
; s- A& i( m q |. I" sConsistent asymptotically normal estimate, 相合渐近正态估计
& z2 |- \/ E, nConsistent estimate, 相合估计
8 t1 B G) a9 ?, L' H& xConstrained nonlinear regression, 受约束非线性回归! R* I1 C9 o1 {3 U
Constraint, 约束$ j; O" C$ k$ v- g
Contaminated distribution, 污染分布0 B3 D' i7 F5 h+ X
Contaminated Gausssian, 污染高斯分布
1 T4 [. P( V R8 ?/ OContaminated normal distribution, 污染正态分布& R$ O8 ^. N( E
Contamination, 污染
0 j2 E- P9 t9 C# \- b8 GContamination model, 污染模型) X6 D* H) j1 Q- _ p9 m
Contingency table, 列联表) j4 A$ s7 V, p' T/ |
Contour, 边界线
. H, q& z' e8 PContribution rate, 贡献率
% e6 y- r& M5 \, K0 ?5 p, E! XControl, 对照) f V- y- { [1 [: e
Controlled experiments, 对照实验
; O) }) B# O% M+ e9 \. z. aConventional depth, 常规深度
- [2 r, _" [2 J. kConvolution, 卷积' D# @0 b8 a- T$ g1 ~) Q
Corrected factor, 校正因子
$ x5 F8 m2 Z9 i) F0 LCorrected mean, 校正均值
( i# h$ _, j1 ]% g0 d* e9 ^% KCorrection coefficient, 校正系数* }* | y2 \5 `; ~5 \! U
Correctness, 正确性
( U! e$ u( y; k4 UCorrelation coefficient, 相关系数
/ F$ w; @- K3 P) p4 l) n6 [2 r8 RCorrelation index, 相关指数# ]. N$ u6 V, K( S4 v! R; l/ I
Correspondence, 对应
) y4 X( q; c! i8 ~Counting, 计数6 d0 N9 F) I& z4 J
Counts, 计数/频数
! c4 W4 r) u5 |. i, X& [Covariance, 协方差1 j, {! O7 t" k; s. F
Covariant, 共变
( m/ ~8 B, @+ F6 ^. aCox Regression, Cox回归
: N/ Q# p5 g5 P5 D( E/ g: X9 |' ACriteria for fitting, 拟合准则 n. L2 Y% T& f) `$ m
Criteria of least squares, 最小二乘准则
Y6 q, d6 M$ d+ _Critical ratio, 临界比5 G' o8 F' `5 r4 q$ W+ h' g
Critical region, 拒绝域
' a5 |" [ o4 o m2 G2 l( ^Critical value, 临界值
* q* |' H+ q2 d) p# MCross-over design, 交叉设计/ d. e$ g6 {" L& j$ M: s
Cross-section analysis, 横断面分析; ]4 R d: m% s! D) w+ Q
Cross-section survey, 横断面调查6 J! |9 O% F' J( C
Crosstabs , 交叉表 - d$ t) w) v" n b+ R) `
Cross-tabulation table, 复合表
+ h' t3 J( k0 ?, r& b" jCube root, 立方根
7 f' w- ^. T* }' p; p% sCumulative distribution function, 分布函数
' f1 j2 b: Y) p3 h# l/ }" j% _Cumulative probability, 累计概率1 D" h: C5 T4 g) p' ~
Curvature, 曲率/弯曲+ ~8 e7 \8 P, v" n( y& l8 r6 s
Curvature, 曲率6 R4 N4 k5 e. B
Curve fit , 曲线拟和 / {1 ]7 n' ~* ]! S9 R. @
Curve fitting, 曲线拟合" t; U6 M9 k; _- l
Curvilinear regression, 曲线回归
% L8 i/ f' H7 p$ L+ YCurvilinear relation, 曲线关系' X0 s1 Z6 Y3 [# k* {4 P" ]
Cut-and-try method, 尝试法( X: V3 Y. t a/ k, t
Cycle, 周期/ V5 |, ?+ o; o& n1 s* T. F1 ~. I
Cyclist, 周期性& ^2 H: b6 ]; E; V& H; f
D test, D检验
% ?6 o% O0 L! b+ R9 Q# H6 tData acquisition, 资料收集
2 Z/ x; M8 e, xData bank, 数据库
0 D; a& G& F' f3 ~$ ~& XData capacity, 数据容量" S/ H B. W: n# t) O H; J3 T4 j8 @3 u
Data deficiencies, 数据缺乏4 {9 K. ]2 x9 h) b5 w- Q$ F
Data handling, 数据处理% h& c+ g; k( b! q4 y8 G
Data manipulation, 数据处理
! H! G8 K$ D% l4 l" G" qData processing, 数据处理
& h4 T8 l+ }0 X Z! j* gData reduction, 数据缩减
1 v5 p: E) c2 B8 K: [Data set, 数据集* O' n9 L( d2 C- O7 G$ J8 t
Data sources, 数据来源
) b( }9 O6 |1 t: b# ~Data transformation, 数据变换
# L. r" ?; V0 H S' MData validity, 数据有效性
; l3 G( D* S! dData-in, 数据输入
& ?' [. w# A: {8 e% vData-out, 数据输出
5 V4 R- d4 V, d5 \' nDead time, 停滞期
6 x/ b( k% C8 O4 t& h: {8 zDegree of freedom, 自由度- l" X w$ V7 y7 I4 G
Degree of precision, 精密度
, W, a! j w$ ]. s" aDegree of reliability, 可靠性程度- `+ I0 Y* J1 q6 r4 [4 G
Degression, 递减
& G1 D, m. ]" }9 I0 K5 s3 W7 uDensity function, 密度函数
/ C! S% e6 I2 X/ _) j( ^' M! {Density of data points, 数据点的密度
2 Q0 B# Q( E0 l/ g" H* ~Dependent variable, 应变量/依变量/因变量
4 \/ ]! o7 W7 P, s! k X4 { hDependent variable, 因变量
/ G+ L4 i" w! l- f9 D& E1 y8 BDepth, 深度
7 d: `5 |% i3 x/ H5 A8 `) ]Derivative matrix, 导数矩阵
; j0 {5 {( `$ O Z3 NDerivative-free methods, 无导数方法9 v* _" g- p o' Q1 X
Design, 设计
3 E" Z- u3 \! X/ \ y- c) s. {6 L4 @Determinacy, 确定性
K) K/ p2 Q2 h- t% ~/ WDeterminant, 行列式
/ I; P! ~4 L+ C) q y3 k+ sDeterminant, 决定因素
6 w4 N4 X/ r; c {Deviation, 离差
6 e- G0 Y9 B3 N6 vDeviation from average, 离均差7 H, F! q0 M- B- Y" V
Diagnostic plot, 诊断图
; G# P' g K8 Q' U+ ^- u; bDichotomous variable, 二分变量9 h: s3 Z* p2 e
Differential equation, 微分方程3 S4 v1 K2 V( x/ z- @
Direct standardization, 直接标准化法3 p) Q3 }5 ~! Q' w" p q; Z3 z' E
Discrete variable, 离散型变量
& _, A" A7 b& g9 X) `DISCRIMINANT, 判断 : R6 [* b9 h& P: z! @
Discriminant analysis, 判别分析" }1 R, L$ p5 Y2 c7 P. H# ?
Discriminant coefficient, 判别系数! D0 x7 S( t9 X' z: [
Discriminant function, 判别值
6 E0 F S, D [) f/ m# g, rDispersion, 散布/分散度
+ t4 ]0 k! e# y5 b1 V) NDisproportional, 不成比例的
" t( d" o/ D/ T% W) K7 ~Disproportionate sub-class numbers, 不成比例次级组含量
* e4 n/ ]2 F+ C" DDistribution free, 分布无关性/免分布
0 j& z+ c4 o4 y3 DDistribution shape, 分布形状
( f8 L" S; b$ }) aDistribution-free method, 任意分布法
5 n- L! o' n- F: ADistributive laws, 分配律2 U. [& d! Q# z3 M$ o, C' `* ^! b' G
Disturbance, 随机扰动项
& o: j3 \+ Y! X; e8 |! ~Dose response curve, 剂量反应曲线& G$ W5 v+ D5 G! b: N
Double blind method, 双盲法$ {7 {: a$ H! U) [4 j5 k
Double blind trial, 双盲试验
, i0 q: ~: m3 Q7 K- U6 q! A5 S4 qDouble exponential distribution, 双指数分布0 ]& w/ x! @2 K. x6 J! s
Double logarithmic, 双对数
& x- c I) J- S4 I7 ]Downward rank, 降秩
$ ]4 r" P0 X8 r0 I0 U) u% IDual-space plot, 对偶空间图
1 b. c4 \4 `8 ~6 D* M0 CDUD, 无导数方法" p X, Z+ E. @# B$ ]5 ~1 w
Duncan's new multiple range method, 新复极差法/Duncan新法. L9 ^+ w5 j' r" S( p7 c% `
Effect, 实验效应
4 }: Z% d- B* f, tEigenvalue, 特征值$ L2 ~7 V0 R, ?( V8 U2 C9 d
Eigenvector, 特征向量6 a4 ]/ ?* R$ C8 F8 |% T- F) E6 f7 M
Ellipse, 椭圆; B9 B* p# }: |3 ^. H) {
Empirical distribution, 经验分布
# A! }" g _( I3 O" F& FEmpirical probability, 经验概率单位0 Q" W+ Z& v( W
Enumeration data, 计数资料
- {* s3 r; I$ r. iEqual sun-class number, 相等次级组含量* n+ `: }' E4 t- L: B" c2 @7 U
Equally likely, 等可能7 B$ q* Y, i. a# m' U \7 `! m0 q
Equivariance, 同变性
$ J$ h1 W9 G; w3 Q. q! G* A9 M! ]3 fError, 误差/错误5 U/ q0 ]3 B# z7 v; a( }
Error of estimate, 估计误差* U+ Y( T& w" {- s3 a1 B
Error type I, 第一类错误
$ v/ R7 r( z5 ?) JError type II, 第二类错误
4 }) `# Q$ `3 \) ]# [% yEstimand, 被估量
2 U: f$ h0 T7 k& E. _0 s( @Estimated error mean squares, 估计误差均方& D/ e* k# j# p/ X$ U
Estimated error sum of squares, 估计误差平方和
- v# f: s! d* l+ U/ N7 A& o% E4 n% VEuclidean distance, 欧式距离
4 W+ s( l! y6 j5 z3 ~+ `; |Event, 事件5 Q# M6 C9 i9 \0 l
Event, 事件
- B* x$ t b2 B6 e' R4 m& n5 vExceptional data point, 异常数据点) D5 b3 a% {) p
Expectation plane, 期望平面: |/ v( Q5 s0 Z; d8 y
Expectation surface, 期望曲面. p% W5 b/ a2 e6 N
Expected values, 期望值
; f% m* A) b/ C" y, YExperiment, 实验
; G( v: u+ T: p0 PExperimental sampling, 试验抽样 D' P! ]. J0 Q! m0 z, w( Q( C
Experimental unit, 试验单位/ k; g, L/ z! |# e" t
Explanatory variable, 说明变量
0 E4 K( z0 t( l5 e" Q; dExploratory data analysis, 探索性数据分析; i8 S1 i! j( [- m& C8 s
Explore Summarize, 探索-摘要5 V+ t, p% B& C! d# z( y# |# N& `& h) {) R
Exponential curve, 指数曲线
0 b3 P0 E8 Z8 l, s+ Y" L/ ?4 @Exponential growth, 指数式增长
% w! `. c5 I( P& R* m! M! }EXSMOOTH, 指数平滑方法
; S& n" p6 L& p7 R, ^* f8 R9 JExtended fit, 扩充拟合
4 Y! W0 F$ t& F7 v2 rExtra parameter, 附加参数
7 w' ~9 S* C, |9 AExtrapolation, 外推法
) V2 }9 [. \# L" r, _0 AExtreme observation, 末端观测值
# r! A8 \, J; a- d; x3 o! PExtremes, 极端值/极值+ U. v5 P0 Q* M" m9 U, b! e# w& L
F distribution, F分布 w0 z4 S4 q% k" W* T+ ^
F test, F检验
( ^7 `8 |9 o" a, r/ L6 d- BFactor, 因素/因子
) I" X" H- A0 ~2 z _7 B4 [Factor analysis, 因子分析
( M; D3 a0 ?+ q3 z9 i2 u+ mFactor Analysis, 因子分析0 V* C/ z% F7 J% j |! }! }
Factor score, 因子得分 1 W7 E- l6 F e0 j4 ]/ C
Factorial, 阶乘% ^+ s/ d& m# d! T3 l( w
Factorial design, 析因试验设计
) t8 c$ [/ r. v3 e) H( w; zFalse negative, 假阴性
$ m( H5 J. V! r3 T* nFalse negative error, 假阴性错误& i1 H4 ~" a; ^; ^4 x5 B, L
Family of distributions, 分布族
6 J( u! |8 b( g' DFamily of estimators, 估计量族
+ }) {$ ~& D% J: f$ pFanning, 扇面! a3 d2 _6 Q% u/ v/ s; J: U3 b8 }
Fatality rate, 病死率' t" D* p% P2 |* j; X/ \
Field investigation, 现场调查( H3 ?; z8 g8 V' d7 K
Field survey, 现场调查
# @- o4 Q; d! v* X/ pFinite population, 有限总体# H0 Q4 N3 ~2 D- L" \1 F
Finite-sample, 有限样本8 b, F: U+ [ R1 M( \1 i
First derivative, 一阶导数2 q# e$ J) {& H$ ?0 I9 b9 v# d
First principal component, 第一主成分 L G% [9 @6 D- a
First quartile, 第一四分位数: ]6 ?, o* e- {# n
Fisher information, 费雪信息量: h6 R( j$ H: Q9 K5 ~9 z
Fitted value, 拟合值4 n% _0 A8 L# O, O1 E
Fitting a curve, 曲线拟合
* F i: c( P1 QFixed base, 定基. @4 U y! b! t. {2 M% Y3 N. |8 D
Fluctuation, 随机起伏$ c( F# z7 G7 b- z8 }9 M
Forecast, 预测
9 w- r* m$ t) b q4 U% }Four fold table, 四格表: G& M1 U# Y6 I u7 c
Fourth, 四分点$ p! u: z9 _# `; n) }6 a
Fraction blow, 左侧比率
- U) S/ V- [, C j) }! s1 e( \Fractional error, 相对误差; f* y, _3 y. o L, S
Frequency, 频率, q/ h1 H- P5 i+ J, G5 G. p& `
Frequency polygon, 频数多边图" ~- S ]7 k9 f: o
Frontier point, 界限点 _& e% |. k7 E% d( _$ D2 p
Function relationship, 泛函关系( R9 A( f; A( P: N6 f2 R$ j
Gamma distribution, 伽玛分布
) b% v. t8 q1 p& |4 VGauss increment, 高斯增量, ~# u! D" J. a+ \1 W
Gaussian distribution, 高斯分布/正态分布& |0 C8 z& a% y# }
Gauss-Newton increment, 高斯-牛顿增量
& q8 Z) O; l1 \ T, J6 [% b( R iGeneral census, 全面普查
3 l( k6 K, R9 `! YGENLOG (Generalized liner models), 广义线性模型 ' k0 a3 k. K3 `6 j
Geometric mean, 几何平均数4 _$ O9 M' M0 d2 _
Gini's mean difference, 基尼均差9 ^# g3 E/ y1 _: b$ {3 D
GLM (General liner models), 一般线性模型 3 }& ~7 O' L" t* z" Z
Goodness of fit, 拟和优度/配合度$ W3 ~: c/ `4 g+ ^# _
Gradient of determinant, 行列式的梯度% n& j" y% M; v: Q% D
Graeco-Latin square, 希腊拉丁方
4 r% A1 D; D) C$ t2 K3 [% G, UGrand mean, 总均值
# ^9 ]! m# P0 sGross errors, 重大错误
( h6 }8 C( h, ~8 W, |Gross-error sensitivity, 大错敏感度2 |" b& V n8 y9 t
Group averages, 分组平均
0 { c5 {! r1 A- H& z9 a$ SGrouped data, 分组资料
0 G+ W) E+ {6 p. | ^" lGuessed mean, 假定平均数 z# R/ L/ N+ Z* O
Half-life, 半衰期. G8 U& U5 T- [# ^0 \# o5 @8 e" T
Hampel M-estimators, 汉佩尔M估计量
8 h+ W5 Q/ `3 ^3 sHappenstance, 偶然事件/ s$ _3 |6 l8 z3 c
Harmonic mean, 调和均数
( s2 U$ K; C N: QHazard function, 风险均数' y- U/ |9 Q- `
Hazard rate, 风险率) R+ d {2 e2 `" G# \/ r- i' C: y
Heading, 标目 * y2 V& Z! }% d9 I1 o/ w# a
Heavy-tailed distribution, 重尾分布
# ]% G& s; q" ?Hessian array, 海森立体阵0 s# ?+ p7 u1 M. C$ c
Heterogeneity, 不同质! S$ M' b0 _, T
Heterogeneity of variance, 方差不齐
5 V: b' I7 l% S& [" ~Hierarchical classification, 组内分组
% h6 U+ W; z( w2 y( I X' eHierarchical clustering method, 系统聚类法- P) R: \. \ U
High-leverage point, 高杠杆率点
) @+ b- L: D( G9 Z! M2 S6 A6 PHILOGLINEAR, 多维列联表的层次对数线性模型: _0 c& x" I3 S* R6 {
Hinge, 折叶点; E/ M" y! q+ D4 l3 n4 K
Histogram, 直方图) B- X) Y* W" R1 s/ g# u
Historical cohort study, 历史性队列研究
0 B) Z/ a* v6 Y3 gHoles, 空洞
k9 Q: I* v# y+ j% y' f7 N- UHOMALS, 多重响应分析
! M( q% r' Q @5 L3 J. D Q% P6 T1 pHomogeneity of variance, 方差齐性2 a* b, W1 g* O9 x
Homogeneity test, 齐性检验
: j) ]: H, @" x; iHuber M-estimators, 休伯M估计量
! _8 Q- \/ H0 c( uHyperbola, 双曲线
1 o9 v, f0 d+ L& v. e& l6 m1 ]Hypothesis testing, 假设检验
$ D8 ]: d, l |. [$ V2 x% uHypothetical universe, 假设总体
5 R2 c% P6 Q% oImpossible event, 不可能事件
9 f D# }7 F! @. F; v @Independence, 独立性- g6 N0 [+ x$ _- a% G T- R
Independent variable, 自变量 \7 Z8 I& r- J! {8 A
Index, 指标/指数
B( I3 ?) Q3 Q" K4 AIndirect standardization, 间接标准化法
1 D) Q' \% O* m6 B( ]Individual, 个体" D5 x a/ s/ q
Inference band, 推断带
# h3 J$ G' R" Z& z7 aInfinite population, 无限总体
' v' M# A* ] [& V W, xInfinitely great, 无穷大- O( a/ u. H8 N3 N# x2 u8 M
Infinitely small, 无穷小
3 n# i6 N: ~( \Influence curve, 影响曲线
$ g' L. h* p0 |2 V7 p5 p9 ~4 R3 BInformation capacity, 信息容量
( e2 l% l- e6 N4 C1 tInitial condition, 初始条件
3 R- S( t6 N5 j7 f# e# T, yInitial estimate, 初始估计值5 o J6 h+ V' n; m I
Initial level, 最初水平' M' D1 Q5 g% X* F1 d8 r! t9 O1 A
Interaction, 交互作用
) O+ Z6 s# Q* _Interaction terms, 交互作用项
5 z' P# l7 T. @$ ^Intercept, 截距
- A% T) P/ M. ?3 x! l# fInterpolation, 内插法' `, ~4 w T/ y. R/ X
Interquartile range, 四分位距
, {2 G. T" f/ q9 U6 Y$ rInterval estimation, 区间估计6 R& L/ S" t4 U- D3 z
Intervals of equal probability, 等概率区间 L/ K. q! x0 m# c% V
Intrinsic curvature, 固有曲率$ C3 q' @6 i9 c3 A1 z- \
Invariance, 不变性
$ \$ t) ]& H1 Z, tInverse matrix, 逆矩阵
6 E5 B+ @" m5 C8 f% I" QInverse probability, 逆概率) H( e% V0 U1 y( f$ [5 V
Inverse sine transformation, 反正弦变换# _2 E; y3 d4 E1 B3 p @4 ^! ?
Iteration, 迭代 ( [% n+ E1 j0 _
Jacobian determinant, 雅可比行列式6 D+ w( t2 q3 I
Joint distribution function, 分布函数0 r3 j0 a- y, }( t8 u3 f3 \
Joint probability, 联合概率0 ]0 h( U W4 D- H$ L* e
Joint probability distribution, 联合概率分布" E, C: x& A' s2 `2 s% |8 ?5 C7 R
K means method, 逐步聚类法
2 c: O9 b- ]. M/ B% mKaplan-Meier, 评估事件的时间长度 ; d* O/ J! {6 O) J2 }& l
Kaplan-Merier chart, Kaplan-Merier图
x3 M; J ?+ j6 |Kendall's rank correlation, Kendall等级相关( L/ x/ P6 u# m) c3 }) [& b
Kinetic, 动力学7 ^6 J& e9 Q1 o$ N9 g X; v: C
Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验
0 i) s9 O! V/ h- r" w' ` W( v: {Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验% W: p2 P" a$ X- t
Kurtosis, 峰度% r/ k4 w9 C4 b
Lack of fit, 失拟1 p& |, c# i3 a+ z: m, j1 Q; ?! X
Ladder of powers, 幂阶梯9 t6 p( X' Y7 t1 N
Lag, 滞后6 c# e' F6 C8 x I5 K
Large sample, 大样本/ ^$ r ]* E* n; N: k( Z
Large sample test, 大样本检验
/ e# D8 q7 v7 M, M- Y. n5 kLatin square, 拉丁方- @- Q) Y) x' D5 q
Latin square design, 拉丁方设计* g- R7 G9 ^% q% G4 A# `1 ~
Leakage, 泄漏7 {: o% G" d0 u+ R# g! B" `* R; ^
Least favorable configuration, 最不利构形
_5 I2 _* k# k8 s/ j& P! DLeast favorable distribution, 最不利分布: P& |. h, Q: {1 O1 y4 O4 S& m
Least significant difference, 最小显著差法
# U3 B( r+ V( F- D' {+ V7 gLeast square method, 最小二乘法
' \5 @; b8 I2 [& o uLeast-absolute-residuals estimates, 最小绝对残差估计/ a# G h, `( u
Least-absolute-residuals fit, 最小绝对残差拟合
& X w' N9 f6 [' ^Least-absolute-residuals line, 最小绝对残差线8 S0 Y4 }1 b8 I
Legend, 图例$ d+ i9 W6 g. t" B
L-estimator, L估计量
2 H; l! [1 _; `3 n4 G" A; hL-estimator of location, 位置L估计量( y9 {4 I7 V( Y4 t' t5 ~5 z U
L-estimator of scale, 尺度L估计量$ z( ~3 O" ?& }, D3 L# T" b, g1 e
Level, 水平4 ^' @% v) K e
Life expectance, 预期期望寿命5 m- r9 t: h% B8 f7 {
Life table, 寿命表
5 W$ M) f& }) x4 W; m' O, D* z) NLife table method, 生命表法+ q2 @7 u, F/ {$ Q
Light-tailed distribution, 轻尾分布
1 o( c1 c0 c3 U0 k! CLikelihood function, 似然函数
3 f% W/ Z4 R A$ E2 g9 S4 \Likelihood ratio, 似然比8 B& v5 u! O t6 ]* f/ J) M
line graph, 线图- N* t P) }6 d$ g4 |
Linear correlation, 直线相关
! J. M7 t, \% k: B0 m8 |' n; gLinear equation, 线性方程
6 Y; f& a |; c6 a5 O }Linear programming, 线性规划
* U2 s9 x6 j1 ~6 lLinear regression, 直线回归9 _- |0 C3 t j) v/ m. \# S
Linear Regression, 线性回归1 N+ }* }+ d& J( o( S
Linear trend, 线性趋势5 X; J' j" w! I. F! G. p' C
Loading, 载荷
9 `" V9 l* l6 ELocation and scale equivariance, 位置尺度同变性
- \. y- j! z) }5 ^7 tLocation equivariance, 位置同变性
5 }+ P" F( Z* s4 z3 q0 J ?Location invariance, 位置不变性; m) j+ |7 w. Q( x8 M8 j% u% b, w
Location scale family, 位置尺度族
6 t- V1 Q6 L' d/ [Log rank test, 时序检验 ' I- o, w; Q6 }! |( \5 l3 l
Logarithmic curve, 对数曲线
. Q/ D& H2 }( S0 g N' J5 yLogarithmic normal distribution, 对数正态分布
9 r2 \# ^% W* S9 P+ k* B- HLogarithmic scale, 对数尺度& S. H0 I* e' c3 Y t0 a, u; n
Logarithmic transformation, 对数变换) J: U4 |5 z* ^' k4 ? S Z
Logic check, 逻辑检查% e" [" ], j! c
Logistic distribution, 逻辑斯特分布
1 r# G* \+ @2 s3 ZLogit transformation, Logit转换* C2 g4 K9 A E0 X h$ ^
LOGLINEAR, 多维列联表通用模型 / D% `( c3 [4 \1 S6 j. {
Lognormal distribution, 对数正态分布
: r5 y: g+ f3 QLost function, 损失函数
. w( C# ?" P% d. T; I0 U8 XLow correlation, 低度相关" l2 h) f! P0 U$ Q/ H% A: A9 G& G
Lower limit, 下限, ^# Z0 i. k- z
Lowest-attained variance, 最小可达方差
+ `8 Q% X4 c# SLSD, 最小显著差法的简称
. e+ v* A4 H7 M: DLurking variable, 潜在变量" W$ i) \$ J9 }. D% w. Y
Main effect, 主效应. z, g" P+ _/ t+ ~( M( d8 v2 t& P
Major heading, 主辞标目
3 C2 k; X# }2 }& [$ T+ Z3 c( \- uMarginal density function, 边缘密度函数3 x5 b! t4 O1 V' e8 _5 B! j# i- n
Marginal probability, 边缘概率- o( z: m X6 r6 R% Z
Marginal probability distribution, 边缘概率分布
+ r' U, L5 A2 l4 v6 P8 ^1 MMatched data, 配对资料! i& o% q' }' t& A
Matched distribution, 匹配过分布
2 M: c, e! x. `' ^7 hMatching of distribution, 分布的匹配% W1 I' U* y! O# v6 Y3 m
Matching of transformation, 变换的匹配
0 D2 I8 c: F9 J4 }# Z% OMathematical expectation, 数学期望
0 h( I( p3 ^% L9 l9 m. r' vMathematical model, 数学模型! a/ e, w& k& u
Maximum L-estimator, 极大极小L 估计量' ]7 n& D8 ^3 ~ L9 k
Maximum likelihood method, 最大似然法) S8 C( j9 H/ X. s% |7 H3 d. I
Mean, 均数& D5 L' Z* V, W+ K- ?, N/ ?
Mean squares between groups, 组间均方
; n- H% Q1 z1 @- t6 v: |Mean squares within group, 组内均方
6 V; z% K& n( Q* y$ c6 i; e0 g/ sMeans (Compare means), 均值-均值比较9 n% L1 i+ K; J
Median, 中位数8 ~7 O4 x0 w, J8 [
Median effective dose, 半数效量2 j8 s7 Y& ~* n+ Z% T% q( @* c
Median lethal dose, 半数致死量3 s+ Y7 N2 B- Q- m, H" o+ j
Median polish, 中位数平滑 S$ g0 ^2 Q# I7 u( ~7 U9 `
Median test, 中位数检验
; i+ x7 d" H9 VMinimal sufficient statistic, 最小充分统计量- d+ f! |. m! Y( y+ p
Minimum distance estimation, 最小距离估计; f- y; h8 r) A( z$ l, w0 f
Minimum effective dose, 最小有效量& C, v1 O5 Q4 H. R! Z+ l, `5 T
Minimum lethal dose, 最小致死量
7 F9 q7 o) s: c. S* {Minimum variance estimator, 最小方差估计量
/ b' T. f/ B7 f: gMINITAB, 统计软件包
3 h) `, D" ?1 P8 |) V% K E6 m* UMinor heading, 宾词标目- \# K, T8 a% h! s. Y5 B
Missing data, 缺失值
6 T5 }" B1 Y! s8 W+ TModel specification, 模型的确定) s3 Y# c9 Q" H) }5 m$ g
Modeling Statistics , 模型统计# u3 p8 q Z$ s. N% C
Models for outliers, 离群值模型
2 d6 D9 e( L4 @: G1 ?% ]6 tModifying the model, 模型的修正$ Z; w1 X- |+ L: r
Modulus of continuity, 连续性模
! `2 c% b- W0 PMorbidity, 发病率 ! a, M6 @# Z2 |3 m8 O F2 R Q. r
Most favorable configuration, 最有利构形
9 l Q+ P* v: y6 r @ v! ?* cMultidimensional Scaling (ASCAL), 多维尺度/多维标度
& h% y1 X0 U( W; B! a! OMultinomial Logistic Regression , 多项逻辑斯蒂回归
2 F2 ^+ U( F0 C" V Z+ \, E7 vMultiple comparison, 多重比较$ d- O8 v. C0 u
Multiple correlation , 复相关
/ C3 K \& C7 h+ J5 D. L! Y- [8 CMultiple covariance, 多元协方差
6 S) b3 f7 l- X7 H4 zMultiple linear regression, 多元线性回归( ]5 A; | X( a' T8 I
Multiple response , 多重选项
9 N: R ?* {5 ]3 Z0 S8 b7 hMultiple solutions, 多解" u; l1 k5 |& K3 V! i. }
Multiplication theorem, 乘法定理! q# R" s4 F; K
Multiresponse, 多元响应) L5 I; w& B4 |# `1 Q. t; W; ^$ T
Multi-stage sampling, 多阶段抽样
* ]$ R$ v. s5 r* N2 o, \Multivariate T distribution, 多元T分布
/ ^+ g2 d; n4 _# k" DMutual exclusive, 互不相容) m: R; Z8 i& c1 S
Mutual independence, 互相独立% p9 h- q5 O% M3 A& H+ V
Natural boundary, 自然边界( M& Q9 ~! Z9 p- o. ~, \! Y
Natural dead, 自然死亡( ~/ |( [ B+ i0 O
Natural zero, 自然零
, a! S; `3 U& h% v2 zNegative correlation, 负相关% M+ ~+ l; ~6 g, g' @4 p
Negative linear correlation, 负线性相关
$ X, Q8 \* D& } DNegatively skewed, 负偏
( h1 L. K& ]+ M# Z9 Q. DNewman-Keuls method, q检验
* E6 n4 j& l* K% S: O8 jNK method, q检验
; }4 X) B' B) x& t( {3 D. JNo statistical significance, 无统计意义3 N; }, K0 j; g
Nominal variable, 名义变量6 o' Z0 ?( Z" j1 J3 r
Nonconstancy of variability, 变异的非定常性
$ _0 S0 i5 B* V! E4 G( H/ nNonlinear regression, 非线性相关) l. H% o1 V8 \
Nonparametric statistics, 非参数统计- n. n( D! r5 G3 H) [6 v& w7 q
Nonparametric test, 非参数检验9 X8 ^/ p; b3 W$ {
Nonparametric tests, 非参数检验
% j+ e1 y/ P/ Z, k0 iNormal deviate, 正态离差
% D; n( c4 x* D1 }4 J7 ~Normal distribution, 正态分布- Q8 r) l* s- a) S' C) o! @$ m
Normal equation, 正规方程组" A9 t0 ^: v. M+ ?+ X
Normal ranges, 正常范围
$ ]- H- h! o% a- kNormal value, 正常值7 B5 i& a x9 ?: S% `+ |; ^, Q0 c. b
Nuisance parameter, 多余参数/讨厌参数: u" u5 p- S7 Q1 J6 ^) p
Null hypothesis, 无效假设 $ j/ q" z- ^6 ~. \: q) f
Numerical variable, 数值变量6 n6 q+ p. j$ A, C- n% M
Objective function, 目标函数
7 d5 p: J2 ?& _8 e0 E" ~" ?5 q6 rObservation unit, 观察单位) f; b: Z& C" B% [+ {, E* Z# Q+ q
Observed value, 观察值
% K0 \5 |2 L4 `# TOne sided test, 单侧检验
* s) l8 ?" i+ b$ w hOne-way analysis of variance, 单因素方差分析5 a3 \* \0 l U: y/ k
Oneway ANOVA , 单因素方差分析6 u, M6 O7 |. @! j" N1 O9 ^* q
Open sequential trial, 开放型序贯设计( T- V5 t7 Q1 ]; o" x" K" k! U; ^
Optrim, 优切尾" P0 O C* ^1 i1 P( r
Optrim efficiency, 优切尾效率
* X- @" ~: R6 KOrder statistics, 顺序统计量
# r" b+ w9 |; HOrdered categories, 有序分类
* R/ P) c- o! }) V5 OOrdinal logistic regression , 序数逻辑斯蒂回归
) N' P- B# R! u8 L1 t: K% {* kOrdinal variable, 有序变量
) _# d! j' u, ]' L# sOrthogonal basis, 正交基
+ \- _& A: u5 cOrthogonal design, 正交试验设计
1 T5 h# ]6 h- p4 I) X. KOrthogonality conditions, 正交条件) A. I0 u+ X6 _$ }
ORTHOPLAN, 正交设计
/ |& V- u& A! j, YOutlier cutoffs, 离群值截断点% B/ H% ]- g3 Z9 q4 D" ^6 ?: N
Outliers, 极端值
/ n! G* }, ?+ j1 m$ x, ~ j: F: y' c DOVERALS , 多组变量的非线性正规相关 1 a- z# K" _$ `7 D
Overshoot, 迭代过度! y2 n! q! v- k& u. |
Paired design, 配对设计4 ^: C0 P/ k" R
Paired sample, 配对样本
! G3 c+ d8 H* W% d) QPairwise slopes, 成对斜率 I% N+ ^3 ?! F) z* u) r
Parabola, 抛物线
3 B/ i4 j+ B/ c) }1 m0 W' _Parallel tests, 平行试验
* J( M) Y, [3 | t s% f; {Parameter, 参数
Z* e- e- V2 ~" y( bParametric statistics, 参数统计
0 K* N s2 D( x S D$ YParametric test, 参数检验: L0 i4 ~7 v* ]6 C6 O% `
Partial correlation, 偏相关
! |$ z( h5 H+ C1 P( MPartial regression, 偏回归
; L" Y" [# d* @0 H8 O# OPartial sorting, 偏排序
( P1 S9 W; \9 h% P2 A' gPartials residuals, 偏残差* H$ n8 n/ A+ {) m
Pattern, 模式" Z: f' v. O" B( l% m6 ?; G
Pearson curves, 皮尔逊曲线) r7 c1 n- U3 x1 Z
Peeling, 退层5 h7 B+ w! m1 N# w, y( A# |& o" y
Percent bar graph, 百分条形图
! S" w8 ?+ a' O/ V. R# A, p+ v, QPercentage, 百分比9 Q; u$ R) S$ ] r9 {4 G' ~* s( M
Percentile, 百分位数
& i: }& x" R$ L$ p; z7 |- GPercentile curves, 百分位曲线2 v; G0 N4 ?# u; ]" H+ `: X$ ]8 k5 h
Periodicity, 周期性
9 S0 \7 X/ Z% t0 ?Permutation, 排列, q, D" F" s9 g2 J# G
P-estimator, P估计量: t1 W* p' F) b9 w
Pie graph, 饼图; y8 e+ A% E' z+ T0 [7 }
Pitman estimator, 皮特曼估计量
L: S8 Y( t7 B5 ~. APivot, 枢轴量
- A& n7 l" F% c. hPlanar, 平坦# E2 C6 ?- y% \) [1 h2 \, ] L
Planar assumption, 平面的假设
, p; h3 S0 |3 k% T2 [( APLANCARDS, 生成试验的计划卡
; R5 Z/ ]( I/ I1 SPoint estimation, 点估计% L8 [% Q$ J* e) H9 M2 R4 r r
Poisson distribution, 泊松分布
1 j$ s3 {, _4 Y' @/ ^Polishing, 平滑; _- U; X3 Y: L' @) ^8 q* q3 q
Polled standard deviation, 合并标准差
5 U) a6 n5 o9 E3 sPolled variance, 合并方差) F z1 s2 e6 Y8 o; K! k7 I+ \
Polygon, 多边图; W$ {, Y/ s1 [( I- L! a
Polynomial, 多项式+ x8 b+ W0 Q+ S C4 M( ?. Q; y
Polynomial curve, 多项式曲线
; O" X$ D. C# c3 l; KPopulation, 总体7 G% q* Z8 u$ B- p9 f2 u! \$ h% @
Population attributable risk, 人群归因危险度
, M* f l: i, M& b% LPositive correlation, 正相关; N" S `8 |3 e3 c
Positively skewed, 正偏
7 y5 f! z8 n, B' |Posterior distribution, 后验分布
) i, Q1 G; l6 q4 \' kPower of a test, 检验效能/ x) _/ Q9 h( `. \) K' |
Precision, 精密度+ J$ [: t% s! t" {# U* |
Predicted value, 预测值. A; }; L8 }3 W; _; \! s
Preliminary analysis, 预备性分析
8 \% }4 e! Y# p, W Z$ }Principal component analysis, 主成分分析0 G' H* x0 E& a# O" x" {
Prior distribution, 先验分布# a! H6 S, ^6 S: |& H4 M
Prior probability, 先验概率) q* X7 p5 G6 @( Z# D
Probabilistic model, 概率模型
4 s2 G# ^. f4 \3 J% M) j! ?: c, X1 G( dprobability, 概率
9 t+ u4 k# H j0 _Probability density, 概率密度" p2 L u% S& o4 Q: w
Product moment, 乘积矩/协方差
" i: `) K8 o( S9 A3 [% PProfile trace, 截面迹图4 D, A+ s. Y! Z& k0 y& u
Proportion, 比/构成比' V0 ^/ M6 ?1 B
Proportion allocation in stratified random sampling, 按比例分层随机抽样
" q4 w3 [; ^9 u" AProportionate, 成比例
F) _, s+ I: c" gProportionate sub-class numbers, 成比例次级组含量
" m z- O2 @4 m9 x3 GProspective study, 前瞻性调查' ]) K! D# r; V# j- N
Proximities, 亲近性 # a$ \5 u" A- }* A- S
Pseudo F test, 近似F检验# B3 e# S R3 {1 a* V' _7 O
Pseudo model, 近似模型) s) D6 @8 s$ j9 }$ {; q5 Z+ \
Pseudosigma, 伪标准差 d5 b) _( g1 A2 M. G) B# Q: C. K1 H! D2 O q
Purposive sampling, 有目的抽样/ V: s3 M ^( W
QR decomposition, QR分解
; l9 X, i9 Q9 m+ Y D" F3 M0 bQuadratic approximation, 二次近似
4 _4 ?( ^1 Y J& u9 O4 Q1 tQualitative classification, 属性分类
8 J! |/ B8 Y3 pQualitative method, 定性方法
5 P. G }8 }. {6 J- CQuantile-quantile plot, 分位数-分位数图/Q-Q图7 V6 E8 h4 z: c* U5 a/ X# l
Quantitative analysis, 定量分析
- `' z1 x7 Y. [Quartile, 四分位数! d6 G) A* N; s
Quick Cluster, 快速聚类' e$ D. W" z# f1 x# u
Radix sort, 基数排序7 F/ M" ^* ^" ^* M% s: T, q: t- q! i
Random allocation, 随机化分组# `. `+ X; S, E- q7 S$ X
Random blocks design, 随机区组设计. E U/ z: e* r8 q0 g0 ]2 s& F/ W
Random event, 随机事件
* f2 |1 [# H" v: S2 JRandomization, 随机化
+ O% }, j) S+ P. q% y# BRange, 极差/全距+ |- ^9 S; _' ]/ e5 ]; o
Rank correlation, 等级相关, z. k8 Q$ {5 o- Y! R: v! h I6 z3 k
Rank sum test, 秩和检验
' J: N4 ]8 ^- r0 v. }" p; o) N$ cRank test, 秩检验# m9 ]/ R' c+ Z3 O a7 p4 i
Ranked data, 等级资料
. ~* \8 \) j& Q0 D5 KRate, 比率( m ]& O: B% \- U
Ratio, 比例
' x6 Z0 F- r1 x" R# U4 hRaw data, 原始资料
" c( J5 k* p4 _: K7 D# hRaw residual, 原始残差, c' O0 I. q* Y3 G N" j1 D% `
Rayleigh's test, 雷氏检验
- B3 p; ^- \+ N$ p/ q4 PRayleigh's Z, 雷氏Z值
* j" S+ K0 c2 `% Q$ a h* M0 e! HReciprocal, 倒数5 u/ y/ K/ c) L! V9 W6 v# c
Reciprocal transformation, 倒数变换
. O5 E) F. w9 [Recording, 记录/ z; m$ P7 t" B! s
Redescending estimators, 回降估计量
8 X0 `8 ?3 A& ^& LReducing dimensions, 降维
8 [& Z( l# r4 W hRe-expression, 重新表达
5 C; g/ }8 @; t+ ^: O7 AReference set, 标准组7 @" s7 Y5 Z7 T' n
Region of acceptance, 接受域: m1 x0 c( ]3 D3 m7 L6 }
Regression coefficient, 回归系数9 w; R) N/ V; _" U; {) u
Regression sum of square, 回归平方和7 i5 U! k2 h" @
Rejection point, 拒绝点7 I0 f9 _5 i* r( g' c
Relative dispersion, 相对离散度
L* m" F. R7 Q: h' p& jRelative number, 相对数: n r& @& h% i5 Z
Reliability, 可靠性
- l# D* k( r: d! s DReparametrization, 重新设置参数
8 y7 i/ t! h+ }7 ^" N* k" U+ M' h* h4 jReplication, 重复
2 I5 I/ u( @6 z3 R+ S5 ~& WReport Summaries, 报告摘要
" P) N; J7 {1 GResidual sum of square, 剩余平方和% q' v9 W- j4 Q- N. S H
Resistance, 耐抗性
! ] u6 @1 M* ^9 t" {# }Resistant line, 耐抗线
' h( Y% {3 O- `0 z+ `2 l6 KResistant technique, 耐抗技术
/ p3 F: @& h" I& X8 `# Y" JR-estimator of location, 位置R估计量
' e; |6 }. J8 L5 y- dR-estimator of scale, 尺度R估计量# o/ ^ D- q9 q. z3 m; K' s
Retrospective study, 回顾性调查 O: w( ~9 ~- W) g5 \
Ridge trace, 岭迹 r+ T+ _* S6 r k; `, P) }
Ridit analysis, Ridit分析; Z- ^+ f. t' [( }: @ Q7 H
Rotation, 旋转5 w% I# T" Y- ~; m* r$ c2 \7 ?
Rounding, 舍入
5 g/ X# U: \6 uRow, 行
8 i8 T! ?' N* FRow effects, 行效应6 o" Q. Y# a) L( v3 I% o" f: e
Row factor, 行因素
$ i( m7 o( C+ h/ ~! HRXC table, RXC表# W1 g0 F$ K/ M. w
Sample, 样本$ C- q# J; f% o {7 E# x
Sample regression coefficient, 样本回归系数
2 c/ g% [, B+ f$ eSample size, 样本量1 Y8 A# ^- _8 ~3 ?- l2 t
Sample standard deviation, 样本标准差& B) C8 l) s9 R r9 h" b
Sampling error, 抽样误差/ W7 v8 _5 I; j8 ?
SAS(Statistical analysis system ), SAS统计软件包2 E2 f% x3 M. A
Scale, 尺度/量表
$ K/ t/ Z! E* `" z g$ [* pScatter diagram, 散点图2 j4 a) L* H* d8 ?; g' J
Schematic plot, 示意图/简图& n9 A% N. a- C* v
Score test, 计分检验: D/ C1 Y1 t* ~4 i/ l6 S
Screening, 筛检
4 n3 I# ^3 c5 E$ ^ k. SSEASON, 季节分析 ; N/ \/ y% Y/ k0 c3 E. o# [9 c
Second derivative, 二阶导数
8 o) u( j4 m: b& {# ASecond principal component, 第二主成分
: m# o5 X9 |: ^: O- A7 ~* d7 I: k; ySEM (Structural equation modeling), 结构化方程模型
3 X; O3 X+ |% R/ s! x% vSemi-logarithmic graph, 半对数图& E; ^$ p6 b! ~3 y' s
Semi-logarithmic paper, 半对数格纸
9 N6 k/ ^" W6 k% ASensitivity curve, 敏感度曲线7 b) S/ I D% \4 l5 X$ v! j7 w1 k' X
Sequential analysis, 贯序分析
# N* R, s* N& K, c- K) ~! F6 ISequential data set, 顺序数据集
) K) ~& N7 o* B3 cSequential design, 贯序设计5 T% J& Q) V$ Q! O5 {( \+ [& o
Sequential method, 贯序法- W4 m: l: A+ H! A2 D, t* t
Sequential test, 贯序检验法
" q4 t: p$ l& K5 NSerial tests, 系列试验
6 t/ C( f4 O( h$ ~* K5 ~+ tShort-cut method, 简捷法 ) F, ?. y9 N% s" ~: j( h# r
Sigmoid curve, S形曲线
$ ^0 { a' }8 x/ i3 CSign function, 正负号函数
/ v- ] Z- }& u/ r9 NSign test, 符号检验
. f/ @1 r0 B+ I3 I8 iSigned rank, 符号秩
8 ], D3 M4 C" Z$ z9 y+ s$ H! z6 m# iSignificance test, 显著性检验
2 q, z r1 r, X1 |Significant figure, 有效数字
$ N6 ^' J# x+ l8 Z& h4 hSimple cluster sampling, 简单整群抽样! w) P2 ]0 X( n( V- C7 D* K
Simple correlation, 简单相关2 U" D: f3 n+ b; o8 E" g& O
Simple random sampling, 简单随机抽样6 H: b0 T' k/ {. j( I# E* }
Simple regression, 简单回归& t+ h+ Z; ]" p: o* P
simple table, 简单表0 Y. Z5 {" G5 t
Sine estimator, 正弦估计量
* |5 e% _$ x( z: u6 FSingle-valued estimate, 单值估计/ W& R, j S/ H8 _8 Z+ z4 \3 e# ]
Singular matrix, 奇异矩阵
8 f7 N0 q: e6 t1 XSkewed distribution, 偏斜分布/ r8 s- A. F! m' } v
Skewness, 偏度0 l* Q$ a1 L3 P7 s3 o J
Slash distribution, 斜线分布
" ^. L4 z% W4 V* @3 {" jSlope, 斜率+ @2 V/ O; j; I7 a7 V$ G6 l
Smirnov test, 斯米尔诺夫检验
0 U2 V& F& W: G) QSource of variation, 变异来源( X. m& v7 P+ _: u
Spearman rank correlation, 斯皮尔曼等级相关
' j5 Y( E6 Y' ?8 }! GSpecific factor, 特殊因子% e% Y- N7 ]% Y# T% y3 ^& f
Specific factor variance, 特殊因子方差
% [; t0 W! b: M' E4 f, \6 S$ oSpectra , 频谱
9 O3 k6 Y% |$ x8 { B( ^' {# [Spherical distribution, 球型正态分布( m1 z R6 p" j: f; ~# c+ n" V
Spread, 展布, a! F* c# Z0 a; }
SPSS(Statistical package for the social science), SPSS统计软件包: P, n+ l( w1 ~$ K. F7 c1 o
Spurious correlation, 假性相关4 o! G" B7 F3 }" m
Square root transformation, 平方根变换6 ^. a* I1 o# d" z0 x
Stabilizing variance, 稳定方差
! x2 Z% h0 S" o6 h" @% WStandard deviation, 标准差
3 b8 C& T4 j# A' k/ N" D6 L& IStandard error, 标准误
& K/ M# D- U' `6 b4 }7 U) ]" v, {+ {Standard error of difference, 差别的标准误
5 b# Q0 y4 `8 s% d' U8 cStandard error of estimate, 标准估计误差
' P! _( q8 N" ^" gStandard error of rate, 率的标准误9 V, G" E3 _8 ^4 x4 _8 J( g0 [
Standard normal distribution, 标准正态分布
} D" V2 @' ^. q6 [8 @- eStandardization, 标准化
* \/ a: ?$ e: B" vStarting value, 起始值
6 ?, b9 D* r& R3 r; Y: t: A7 `Statistic, 统计量
" k1 B; r# }4 X( D- Y7 F4 |& dStatistical control, 统计控制
: c$ Q x* f/ v0 L* j/ S4 GStatistical graph, 统计图& c( O+ Z+ z b4 o p$ x
Statistical inference, 统计推断; f: Y# @' q* Y( g- J' B3 C! f
Statistical table, 统计表
; l/ C- Y( A4 E6 VSteepest descent, 最速下降法
& ^/ b4 r9 [3 n" y! I/ ^# _$ L8 m. RStem and leaf display, 茎叶图
4 ]7 A' C& K$ a* d$ h+ g, RStep factor, 步长因子, h9 X1 b4 i9 a$ m/ Y/ y* _
Stepwise regression, 逐步回归
8 q) \% `0 N- bStorage, 存
* f6 Y/ m, [; S3 @6 t: GStrata, 层(复数)
6 V; ~7 k3 l3 T3 d0 [+ Y/ Q) lStratified sampling, 分层抽样
" R- {& c" o/ e/ B# }% r! \/ @Stratified sampling, 分层抽样# L' z# q/ k2 v) m$ a. `, _$ Q% R
Strength, 强度
8 E) q/ v! c$ z: |3 ~7 KStringency, 严密性 ]; S2 J6 {* s4 \4 D
Structural relationship, 结构关系
0 S$ {8 M# F6 @' k0 S: F0 s3 TStudentized residual, 学生化残差/t化残差
4 R( R1 @) a8 `. O; ]! mSub-class numbers, 次级组含量
0 r8 x. n6 |! y2 ^8 w9 hSubdividing, 分割( `2 ^9 v7 }- j9 n
Sufficient statistic, 充分统计量
4 G- T {+ k5 ^! F/ ]- p# dSum of products, 积和
$ S1 [' S8 x p2 x* H# P) u/ HSum of squares, 离差平方和# J; k/ W; c. u! Y0 J
Sum of squares about regression, 回归平方和, U8 x4 G. p# d
Sum of squares between groups, 组间平方和
+ e$ J1 ~* O0 o, l/ ]. g+ DSum of squares of partial regression, 偏回归平方和
: ^' z0 L! H1 Q5 T: XSure event, 必然事件
7 c- m4 }# E7 H7 t n1 i3 [ I, u% `; d3 MSurvey, 调查$ k( e1 V( B) U- }$ B
Survival, 生存分析
8 W$ M F5 {% X$ _4 k2 YSurvival rate, 生存率
, j; \; j* q0 T3 X7 f p' Q! RSuspended root gram, 悬吊根图
; J4 Z y" i8 H- FSymmetry, 对称2 `4 D6 Y! D3 @* _- M& h
Systematic error, 系统误差# q- @( t& w3 X! l; R
Systematic sampling, 系统抽样* u5 q5 W2 e) Y- \) H# p& A
Tags, 标签
( t) h! a: x$ ~" Q3 T4 tTail area, 尾部面积
x3 I9 J6 b, s+ A) b* h; F& RTail length, 尾长
+ \6 l! h( j1 Q9 y; TTail weight, 尾重, ^% E$ b; m5 \/ { y, [
Tangent line, 切线
# m2 I; Y3 Y: U4 |8 X% G vTarget distribution, 目标分布
' r1 W& x1 K' T# j* K+ h2 \Taylor series, 泰勒级数1 H' E3 g8 u' j% E/ Y
Tendency of dispersion, 离散趋势) J! h2 R+ P/ a \$ g6 T
Testing of hypotheses, 假设检验
2 n N) c( B& E2 QTheoretical frequency, 理论频数
* \7 K6 z) B, u- jTime series, 时间序列9 H! _3 O: s: H# m9 v8 G7 T
Tolerance interval, 容忍区间' w2 j" s. n$ ` r+ B& ?
Tolerance lower limit, 容忍下限
3 [$ o5 D$ x8 [* HTolerance upper limit, 容忍上限- B6 E2 ?) T; J' w- a+ U9 M+ a
Torsion, 扰率4 l; }+ ? ~) F- B g
Total sum of square, 总平方和
- i. g% ^9 Y: KTotal variation, 总变异
4 i3 S) x) A' B, E" {/ M$ F' G0 ?0 KTransformation, 转换3 v, Q/ o, }4 t7 o% s
Treatment, 处理
$ y: E0 {3 S3 E! r6 d7 fTrend, 趋势
; q- W" a1 R5 v' zTrend of percentage, 百分比趋势
" J4 q3 _0 D. l$ q& uTrial, 试验
8 \& `+ {% C; k! H3 \* ]Trial and error method, 试错法
- ?- Y: x! X; b$ ATuning constant, 细调常数, K) a7 J! d6 i7 H7 N; i/ D/ _7 O
Two sided test, 双向检验
0 ?+ u+ ~$ h5 |7 ^7 ]Two-stage least squares, 二阶最小平方0 N6 ?/ d2 M: B$ u/ j& U7 o
Two-stage sampling, 二阶段抽样
- ^# `; |" [' | O+ n0 YTwo-tailed test, 双侧检验- Z! N x' N% A, ^3 X8 V: a8 Z
Two-way analysis of variance, 双因素方差分析
. k1 h% Z3 M) c: R0 _" J4 YTwo-way table, 双向表8 S5 t/ L8 u& h
Type I error, 一类错误/α错误
2 s9 I) H8 m: s* `) DType II error, 二类错误/β错误
3 k6 ?6 H! v3 o1 \$ K' I8 ^* sUMVU, 方差一致最小无偏估计简称
/ @( j1 ^: E* q/ a- t1 I4 R/ I* ]7 ]Unbiased estimate, 无偏估计
' U k+ S! Z/ IUnconstrained nonlinear regression , 无约束非线性回归# |6 \7 L' S2 V6 H' l7 [
Unequal subclass number, 不等次级组含量
$ h4 V5 O6 v0 a) w* ^; x% X) w4 FUngrouped data, 不分组资料
6 B# q) D# h' f, _Uniform coordinate, 均匀坐标" P% x; V5 Z4 p: n2 t; I
Uniform distribution, 均匀分布9 |1 D6 U: z7 A" E! j. J
Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计; b$ `! ]0 [# o; J
Unit, 单元+ S- S+ L1 Y1 B
Unordered categories, 无序分类# o/ H7 ^* w+ K! w0 n! ?3 m
Upper limit, 上限) `) j; L* [# u j& K
Upward rank, 升秩
2 T; p4 k P$ dVague concept, 模糊概念
' ], ?) e" _9 g* VValidity, 有效性
, k/ K8 m. h" L7 [/ fVARCOMP (Variance component estimation), 方差元素估计: k6 o* r8 n% Z" y
Variability, 变异性$ Y% r; R! k4 r" Z0 X& z9 }
Variable, 变量
$ {! r# W% ?5 p V V% @Variance, 方差
# V, b( @' E: T! h YVariation, 变异
7 y: K; G/ r+ @6 k0 ?5 x' x( @Varimax orthogonal rotation, 方差最大正交旋转
: Z4 y( I8 T6 e9 G; c% OVolume of distribution, 容积4 N$ M3 s. R0 b/ i6 b" T
W test, W检验" Z' ~: E% @; \
Weibull distribution, 威布尔分布
. g( j9 ]6 F8 h9 s4 k+ F7 BWeight, 权数1 n4 J5 x2 K- ^! `
Weighted Chi-square test, 加权卡方检验/Cochran检验: L( M7 f' Q- T% Z% o4 T( B
Weighted linear regression method, 加权直线回归
* {' @) H$ }' o" W7 ?Weighted mean, 加权平均数+ L3 G0 L8 L4 e) @
Weighted mean square, 加权平均方差8 E @; W2 x5 L
Weighted sum of square, 加权平方和2 \1 L; i, |; J1 K7 D! p4 j
Weighting coefficient, 权重系数
1 `+ k' Y* ~! tWeighting method, 加权法
5 o* D5 c: L0 K1 F, t7 nW-estimation, W估计量
! s) W* k$ \9 [7 a `2 XW-estimation of location, 位置W估计量
( [# [4 C9 v6 {& {5 lWidth, 宽度
& w* o, P! m8 T& s7 CWilcoxon paired test, 威斯康星配对法/配对符号秩和检验/ f& I# Z6 g( v4 W, X/ p' I4 \
Wild point, 野点/狂点
* b+ Y$ x1 W( \* W( TWild value, 野值/狂值
: z3 k" [3 u8 G9 k- Z5 ZWinsorized mean, 缩尾均值. {4 j8 p" Q( e2 Y
Withdraw, 失访 # y* m3 X7 f- L5 ~1 D2 [ i
Youden's index, 尤登指数- O2 S f; {2 \& \/ A6 u0 }3 |2 d( Q2 E$ g
Z test, Z检验8 u5 l: f4 b9 v9 ]7 G
Zero correlation, 零相关# v8 |) Q7 \' f/ Z, U0 }
Z-transformation, Z变换 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册会员
x
|